The examples/natmod features0 and features1 examples now build and run on
ARMv6-M platforms. More complicated examples are not yet supported because
the compiler emits references to built-in functions like __aeabi_uidiv.
Signed-off-by: Damien George <damien@micropython.org>
If __thumb2__ is defined by the compiler then .mpy files marked as ARMV6M
and above (up to ARMV7EMDP) are supported. If it's not defined then only
ARMV6M .mpy files are supported. This makes sure that on CPUs like
Cortex-M0+ (where __thumb2__ is not defined) only .mpy files marked as
ARMV6M can be imported.
Signed-off-by: Damien George <damien@micropython.org>
This commit adjusts the asm_thumb_xxx functions so they can be dynamically
configured to use ARMv7-M instructions or not. This is available when
MICROPY_DYNAMIC_COMPILER is enabled, and then controlled by the value of
mp_dynamic_compiler.native_arch.
If MICROPY_DYNAMIC_COMPILER is disabled the previous behaviour is retained:
the functions emit ARMv7-M instructions only if MICROPY_EMIT_THUMB_ARMV7M
is enabled.
Signed-off-by: Damien George <damien@micropython.org>
This eliminates the need to save and restore the exception unwind handler
pointer when calling nlr_push.
Signed-off-by: Damien George <damien@micropython.org>
The performance benchmark tests now support `--via-mpy` and `--emit native`
on remote targets. For example:
$ ./run-perfbench.py -p --via-mpy --emit native 100 100
Signed-off-by: Damien George <damien@micropython.org>
This adds support for the `--via-mpy` and `--emit native` options when
running tests on remote targets (via pyboard.py). It's now possible to do:
$ ./run-tests.py --target pyboard --via-mpy
$ ./run-tests.py --target pyboard --via-mpy --emit native
Signed-off-by: Damien George <damien@micropython.org>
Reasons for removal:
- It did not work properly because it stopped the hardware watchdog
timer while keeping the software watchdog running (issue #8597).
- There isn't a deinit method for the WDT in any other port.
- "The watchdog is not intended to be stopped. That is a feature."
(See #8600.)
For example, ussl can come from axtls or mbedtls. If neither are enabled
then don't try and set an empty definition twice, and only include it
once in MICROPY_REGISTERED_MODULES.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
When opening a new issue the following selection is now shown:
- Bug reports
- Feature requests
- Security issue
- Documentation issue
- Link to forum
- Link to docs
- Link to downloads
Now that constant tuples are supported in the parser, eg (1, True, "str"),
it's a small step to allow anything that is a constant to be used with the
pattern:
from micropython import const
X = const(obj)
This commit makes the required changes to allow the following types of
constants:
from micropython import const
_INT = const(123)
_FLOAT = const(1.2)
_COMPLEX = const(3.4j)
_STR = const("str")
_BYTES = const(b"bytes")
_TUPLE = const((_INT, _STR, _BYTES))
_TUPLE2 = const((None, False, True, ..., (), _TUPLE))
Prior to this, only integers could be used in const(...).
Signed-off-by: Damien George <damien@micropython.org>
Because the test modifies the (now) bytearray object, and if it's a bytes
object it's not guaranteed that it can be modified, or that this constant
object isn't used elsewhere.
Signed-off-by: Damien George <damien@micropython.org>
The recent rework of bytecode made all constants global with respect to the
module (previously, each function had its own constant table). That means
the constant table for a module is shared among all functions/methods/etc
within the module.
This commit add support to the compiler to de-duplicate constants in this
module constant table. So if a constant is used more than once -- eg 1.0
or (None, None) -- then the same object is reused for all instances.
For example, if there is code like `print(1.0, 1.0)` then the parser will
create two independent constants 1.0 and 1.0. The compiler will then (with
this commit) notice they are the same and only put one of them in the
constant table. The bytecode will then reuse that constant twice in the
print expression. That allows the second 1.0 to be reclaimed by the GC,
also means the constant table has one less entry so saves a word.
Signed-off-by: Damien George <damien@micropython.org>
Prior to this commit, all qstrs were required to be allocated (by calling
mp_emit_common_use_qstr) in the MP_PASS_SCOPE pass (the first one). But
this is an unnecessary restriction, which is lifted by this commit.
Lifting the restriction simplifies the compiler because it can allocate
qstrs in later passes.
This also generates better code, because in some cases (eg when a variable
is closed over) the scope of an identifier is not known until a bit later
and then the identifier no longer needs its qstr allocated in the global
table.
Code size is reduced for all ports with this commit.
Signed-off-by: Damien George <damien@micropython.org>
Some architectures (like esp32 xtensa) cannot read byte-wise from
executable memory. This means the prelude for native functions -- which is
usually located after the machine code for the native function -- must be
placed in separate memory that can be read byte-wise. Prior to this commit
this was achieved by enabling N_PRELUDE_AS_BYTES_OBJ for the emitter and
MICROPY_EMIT_NATIVE_PRELUDE_AS_BYTES_OBJ for the runtime. The prelude was
then placed in a bytes object, pointed to by the module's constant table.
This behaviour is changed by this commit so that a pointer to the prelude
is stored either in mp_obj_fun_bc_t.child_table, or in
mp_obj_fun_bc_t.child_table[num_children] if num_children > 0. The reasons
for doing this are:
1. It decouples the native emitter from runtime requirements, the emitted
code no longer needs to know if the system it runs on can/can't read
byte-wise from executable memory.
2. It makes all ports have the same emitter behaviour, there is no longer
the N_PRELUDE_AS_BYTES_OBJ option.
3. The module's constant table is now used only for actual constants in the
Python code. This allows further optimisations to be done with the
constants (eg constant deduplication).
Code size change for those ports that enable the native emitter:
unix x64: +80 +0.015%
stm32: +24 +0.004% PYBV10
esp8266: +88 +0.013% GENERIC
esp32: -20 -0.002% GENERIC[incl -112(data)]
rp2: +32 +0.005% PICO
Signed-off-by: Damien George <damien@micropython.org>