Initial version, using the LP RTC clock. It provides setting the date and
time with rtc.init() or rtc.datetime(), and reading the date and time with
rtc.datetime() or rtc.now(). The method weekday() reports the weekday of
the current date. It starts with 0 for Monday.
The tuple order for datetime() and now() matches the CPython sequence:
(year, month, day, hour, minute, second, microsecond, TZ). TZ is ignored
and reported as None. Microsecond is provided at a best effort.
If a battery is not supplied, the default boot date/time is 1970/1/1 0:0:0.
With a battery, the clock continues to run even when the board is not
powered. The clock is quite precise. If not, using rtc.calibration() may
help.
It supports three hardware timer channels based on the PIT timers of the
MIMXRT MCU. The timer id's are 0, 1 and 2. On soft reboot all active
timers will be stopped via finalisers.
This is required since the Teensy Halfkay loader attempts to erase all of
the flash but fails to do so, at least in my tests. Formatting brings it
back to a known state.
This commit adds full support for a filesystem on all boards, with a block
device object mimxrt.Flash() and uos.VfsLfs2 enabled.
Main changes are:
- Refactoring of linker scripts to accomodate reserved area for VFS. VFS
will take up most of the available flash. 1M is reserved for code. 9K is
reserved for flash configuration, interrupts, etc.
- Addition of _boot.py with filesystem init code, called from main.c.
- Definition of the mimxrt module with a Flash class in modmimxrt.[ch].
- Implementation of a flash driver class in mimxrt_flash.c. All flashing
related functions are stored in ITCM RAM.
- Addition of the uos module with filesystem functions.
- Implementation of uos.urandom() for the sake of completeness of the uos
module.
It uses sample code from CircuitPython supplied under MIT license, which
uses the NXP SDK example code.
Done in collaboration with Philipp Ebensberger aka @alphaFred who
contributed the essential part to enable writing to flash while code is
executing, among other things.
- modified pin type from pin_obj_t to machine_pin_obj_t
- created machine_pin.c
- implemented basic version of make-pins.py to genertate pins.c/.h files
automatically; the only alternate function currently supported is GPIO
- added af.csv files for all supported MCUs
- replaced pins.c/pins.h files with pin.csv for all boards
- implemented on/off/high/low/value/init methods
- Implemented IN/OUT/OPEN_DRAIN modes
- modified LDFLAGS for DEBUG build to get usefull .elf file for debugging
Signed-off-by: Philipp Ebensberger
SysTick cannot wake the CPU from WFI/WFE so a hardware timer is needed to
keep track of ticks/delay (similar to the nrf port).
Fixes issue #7234.
Signed-off-by: Damien George <damien@micropython.org>
This change allows running the tests in tests/basics/ without any failures
(but some tests are still skipped).
Signed-off-by: Damien George <damien@micropython.org>
On i.MX the SysTick IRQ cannot wake the CPU from a WFI so the CPU was
blocked on WFI waiting for USB data in mp_hal_stdin_rx_chr() even though it
had already arrived (because it may arrive just after calling the check
tud_cdc_available()). This commit fixes this problem by using SEV/WFE to
indicate that there has been a USB event.
The mp_hal_stdout_tx_strn() function is also fixed so that it doesn't
overflow the USB buffers.
Signed-off-by: Damien George <damien@micropython.org>
To simplify config, there's no need to specify MP_PLAT_PRINT_STRN if it's
the same as the default definition in py/mpconfig.h.
Signed-off-by: Damien George <damien@micropython.org>
The last argument of TUD_CDC_DESCRIPTOR() is the endpoint size (or
wMaxPacketSize), not the CDC RX buffer size (which can be larger than the
endpoint size).
Signed-off-by: Damien George <damien@micropython.org>
Sending more than 64 bytes to the USB CDC endpoint in HS mode will lead to
a hard crash. This commit fixes the issue, although there may be a better
fix from upstream TinyUSB in the future.
This commit implements an LED class with rudimentary parts of a pin C API
to support it. The LED class does not yet support setting an intensity.
This LED class is put in the machine module for the time being, until a
better place is found.
One LED is supported on TEENSY40 and MIMXRT1010_EVK boards.
No functionality change is intended with this commit, it just consolidates
the separate implementations of GC helper code to the lib/utils/ directory
as a general set of helper functions useful for any port. This reduces
duplication of code, and makes it easier for future ports or embedders to
get the GC implementation correct.
Ports should now link against gchelper_native.c and either gchelper_m0.s or
gchelper_m3.s (currently only Cortex-M is supported but other architectures
can follow), or use the fallback gchelper_generic.c which will work on
x86/x64/ARM.
The gc_helper_get_sp function from gchelper_m3.s is not really GC related
and was only used by cc3200, so it has been moved to that port and renamed
to cortex_m3_get_sp.
Note: the uncrustify configuration is explicitly set to 'add' instead of
'force' in order not to alter the comments which use extra spaces after //
as a means of indenting text for clarity.
Add -Wdouble-promotion and -Wfloat-conversion for most ports to ban out
implicit floating point conversions, and add extra Travis builds using
MICROPY_FLOAT_IMPL_FLOAT to uncover warnings which weren't found
previously. For the unix port -Wsign-comparison is added as well but only
there since only clang supports this but gcc doesn't.
This is an extremely minimal port to the NXP i.MX RT, in the style of the
SAMD port It's largely based on the TinyUSB mimxrt implementation, using
the NXP SDK. It currently supports the Teensy 4.0 board with a REPL over
the USB-VCP interface.
This commit also adds the NXP SDK submodule (also from TinyUSB) to
lib/nxp_driver.
Note: if you already have the tinyusb submodule initialized recursively you
will need to run the following as the tinyusb sub-submodules have been
rearranged (upstream):
git submodule deinit lib/tinyusb
rm -rf .git/modules/lib/tinyusb
git submodule update --init lib/tinyusb