and make corresponding simplifications in shared-bindings-matrix,
but directly using the final defines from CFLAGS instead of the
status quo.
The net changes are to disable audiocore & audiomixer on some espressif
devices that have no audio output at all. Other than that, the
shared-bindings-matrix seems to be identical.
On my i5-1235U laptop this speeds LTO "partition=balanced" builds
substantially, because each "partition" can be run on a separate
CPU thread. I used "pygamer" as my test build with a parallelism of
`-j4`, and took the best elapsed time reported over 4 builds.
The improvement was from 34.6s to 24.0s (-30%).
A link-only build (rm build-pygamer/firmware.elf; make -j...) improved
from1 17.4s to 5.1s (-70%)
The size of the resulting firmware is unchanged.
Boards that are nearly full use "-flto-partition=one" to improve code
size optimization. When LTO partition is "one", this feature doesn't help
but it doesn't seem to negatively affect anything either (tested
building trinket_m0)
and re-organize so that esp32 s2/s3 don't do as much at reset
.. it's not necessary (because most data is in esp-idf managed memory)
and doing this saves me from having to debug why reconstruct isn't working
properly on that platform.
This needs to be tested on other platforms again before being merged!
This reduces the stack frame size of mp_builtin___import__ by
limiting the support path length of files from 256 to 96. This
function can be called recursively for nested imports so it adds up.
Also reduce mp_execute_bytecode (vm.c) from 206 a bc call to 124.
This too is recursive and adds up. It is reduced by preventing
some inlining. It may decrease performance slightly when importing
and unpacking.
Adds two new scripts for debugging. One is used from gdb to print
frame sizes in a backtrace. The other prints what pcs use a
particular stack offset. This helps find infrequently used stack
space.
Fixes#8053.
This class allows much more expressive sound synthesis:
* tremolo & vibrato
* arbitrary frequency
* different evelope & waveform per note
* all properties dynamically settable from Python code
This adds a script to generate the peripherals files (except clock).
It adds support for the 1015, 1020, 1040, and 1050 EVKs.
Some work was started on 1176 but it isn't working. So, the board
def is in a separate branch.
Fixes#3521. Fixes#2477.
`locals_dict` and `attr` are incompatible, so just use circuitpython-style
properties so that a property and a method are both available.
this makes no difference in circuitpython, where
`MICROPY_PY_BUILTINS_MEMORYVIEW_ITEMSIZE` is never enabled
PicoDVI in CP support 640x480 and 800x480 on Feather DVI, Pico and
Pico W. 1 and 2 bit grayscale are full resolution. 8 and 16 bit
color are half resolution.
Memory layout is modified to give the top most 4k of ram to the
second core. Its MPU is used to prevent flash access after startup.
The port saved word is moved to a watchdog scratch register so that
it doesn't get overwritten by other things in RAM.
Right align status bar and scroll area. This normally gives a few
pixels of padding on the left hand side and improves the odds it is
readable in a case. Fixes#7562
Fixes c stack checking. The length was correct but the top was being
set to the current stack pointer instead of the correct top.
Fixes#7643
This makes Bitmap subscr raise IndexError instead of ValueError
when the index arguments are wrong.
In #7497 port_background_task was renamed to port_background_tick
but the actual call site wasn't changed. This meant that it was
no longer called!
Rename more functions from task to tick to make it clearer which is
which.
In contrast to MidiTrack, this can be controlled from Python code,
turning notes on/off as desired.
Not tested on real HW yet, just the acceptance test based on checking
which notes it thinks are held internally.
* Enable dcache for OCRAM where the VM heap lives.
* Add CIRCUITPY_SWO_TRACE for pushing program counters out over the
SWO pin via the ITM module in the CPU. Exempt some functions from
instrumentation to reduce traffic and allow inlining.
* Place more functions in ITCM to handle errors using code in RAM-only
and speed up CP.
* Use SET and CLEAR registers for digitalio. The SDK does read, mask
and write.
* Switch to 2MiB reserved for CircuitPython code. Up from 1MiB.
* Run USB interrupts during flash erase and write.
* Allow storage writes from CP if the USB drive is disabled.
* Get perf bench tests running on CircuitPython and increase timeouts
so it works when instrumentation is active.