This commit enables some significant optimisations for esp32:
- move the VM to iRAM
- move hot parts of the runtime to iRAM (map lookup, load global/name,
mp_obj_get_type)
- enable MICROPY_OPT_LOAD_ATTR_FAST_PATH
- enable MICROPY_OPT_MAP_LOOKUP_CACHE
- disable assertions
- change from -Os to -O2 for compilation
It's hard to measure performance on esp32 due to external flash and
hardware caching. But this set of changes improves performance compared to
master by (on a TinyPICO with the GENERIC build, using IDF 4.2.2, running
at 160MHz):
diff of scores (higher is better)
N=100 M=100 esp32-master -> esp32-perf diff diff% (error%)
bm_chaos.py 71.28 -> 268.08 : +196.80 = +276.094% (+/-0.04%)
bm_fannkuch.py 44.10 -> 69.31 : +25.21 = +57.166% (+/-0.01%)
bm_fft.py 1385.27 -> 2538.23 : +1152.96 = +83.230% (+/-0.01%)
bm_float.py 1060.94 -> 3900.62 : +2839.68 = +267.657% (+/-0.03%)
bm_hexiom.py 10.90 -> 32.79 : +21.89 = +200.826% (+/-0.02%)
bm_nqueens.py 1000.83 -> 2372.87 : +1372.04 = +137.090% (+/-0.01%)
bm_pidigits.py 288.13 -> 664.40 : +376.27 = +130.590% (+/-0.46%)
misc_aes.py 102.45 -> 345.69 : +243.24 = +237.423% (+/-0.01%)
misc_mandel.py 1016.58 -> 2121.92 : +1105.34 = +108.731% (+/-0.01%)
misc_pystone.py 632.91 -> 1801.87 : +1168.96 = +184.696% (+/-0.08%)
misc_raytrace.py 76.66 -> 281.78 : +205.12 = +267.571% (+/-0.05%)
viper_call0.py 210.63 -> 273.17 : +62.54 = +29.692% (+/-0.01%)
viper_call1a.py 208.45 -> 269.51 : +61.06 = +29.292% (+/-0.00%)
viper_call1b.py 185.44 -> 228.25 : +42.81 = +23.086% (+/-0.01%)
viper_call1c.py 185.86 -> 228.90 : +43.04 = +23.157% (+/-0.01%)
viper_call2a.py 207.10 -> 267.25 : +60.15 = +29.044% (+/-0.00%)
viper_call2b.py 173.76 -> 209.42 : +35.66 = +20.523% (+/-0.00%)
Five tests have more than 3x speed up (200%+).
The performance of the tests bm_fft, bm_pidigits and misc_aes now scale
with CPU frequency (eg changing frequency to 240MHz boosts the performance
of these by 50%), which means they are no longer influenced by timing of
external flash access. (The viper_call* tests did previously scale with
CPU frequency, and they still do.)
Turning off assertions reduces code size by about 80k, and going from -Os
to -O2 costs about 100k, so the net change in code size (for the GENERIC
board) is about +20k.
If a board wants to enable assertions, or use -Os instead of -O2, that's
still possible by overriding the sdkconfig parameters.
Signed-off-by: Damien George <damien@micropython.org>
To match network_lan.c and network_ppp.c, and make it clear what code is
specifically for WLAN support.
Also provide a configuration option MICROPY_PY_NETWORK_WLAN which can be
used to fully disable network.WLAN (it's enabled by default).
Signed-off-by: Damien George <damien@micropython.org>
To do this the board must define MICROPY_BOARD_STARTUP, set
MICROPY_SOURCE_BOARD then define the new start-up code.
For example, in mpconfigboard.h:
#define MICROPY_BOARD_STARTUP board_startup
void board_startup(void);
in mpconfigboard.cmake:
set(MICROPY_SOURCE_BOARD
${MICROPY_BOARD_DIR}/board.c
)
and in a new board.c file in the board directory:
#include "py/mpconfig.h"
void board_startup(void) {
boardctrl_startup();
// extra custom startup
}
This follows stm32's boardctrl facilities.
Signed-off-by: Damien George <damien@micropython.org>
This commit refactors machine.PWM and creates extmod/machine_pwm.c. The
esp8266, esp32 and rp2 ports all use this and provide implementations of
the required PWM functionality. This helps to reduce code duplication and
keep the same Python API across ports.
This commit does not make any functional changes.
Signed-off-by: Damien George <damien@micropython.org>
The zephyr port doesn't support SoftI2C so it's not enabled, and the legacy
I2C constructor check can be removed.
Signed-off-by: Damien George <damien@micropython.org>
Reverse operations are supported on stm32 and rp2, and esp32 has enough
space to also enable inplace operations, to make it complete.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This helper is added to properly set a pending exception, to mirror
mp_sched_schedule(), which schedules a function.
Signed-off-by: Damien George <damien@micropython.org>
The underlying OS (the ESP-IDF) uses it's own internal errno codes and so
it's simpler and cleaner to use those rather than trying to convert
everything to the values defined in py/mperrno.h.
The "word" referred to by BYTES_PER_WORD is actually the size of mp_obj_t
which is not always the same as the size of a pointer on the target
architecture. So rename this config value to better reflect what it
measures, and also prefix it with MP_.
For uses of BYTES_PER_WORD in setting the stack limit this has been
changed to sizeof(void *), because the stack usually grows with
machine-word sized values (eg an nlr_buf_t has many machine words in it).
Signed-off-by: Damien George <damien@micropython.org>
To simplify config, there's no need to specify MP_PLAT_PRINT_STRN if it's
the same as the default definition in py/mpconfig.h.
Signed-off-by: Damien George <damien@micropython.org>
For seeding, the RNG function of the ESP-IDF is used, which is told to be a
true RNG, at least when WiFi or Bluetooth is enabled. Seeding on import is
as per CPython. To obtain a reproducible sequence of pseudo-random numbers
one must explicitly seed with a known value.
The SoftSPI constructor is now used soley to create SoftSPI instances, it
can no longer delegate to create a hardware-based SPI instance.
Signed-off-by: Damien George <damien@micropython.org>
The SoftI2C constructor is now used soley to create SoftI2C instances, it
can no longer delegate to create a hardware-based I2C instance.
Signed-off-by: Damien George <damien@micropython.org>
This commit allows the user to set/get the GAP device name used by service
0x1800, characteristic 0x2a00. The usage is:
BLE.config(gap_name="myname")
print(BLE.config("gap_name"))
As part of this change the compile-time setting
MICROPY_PY_BLUETOOTH_DEFAULT_NAME is renamed to
MICROPY_PY_BLUETOOTH_DEFAULT_GAP_NAME to emphasise its link to GAP and this
new "gap_name" config value. And the default value of this for the NimBLE
bindings is changed from "PYBD" to "MPY NIMBLE" to be more generic.
TimeoutError was added back in 077812b2abe3f5e5325194f9694dad7eb38186dd for
the cc3200 port. In f522849a4d5a978ac3d322d71a755f75d07e8ce6 the cc3200
port enabled use of it in the socket module aliased to socket.timeout. So
it was never added to the builtins. Then it was replaced by
OSError(ETIMEDOUT) in 047af9b10bfc6b0ec412f8450c6bec10ab95254b.
The esp32 port enables this exception, since the very beginning of that
port, but it could never be accessed because it's not in builtins.
It's being removed: 1) to not encourage its use; 2) because there are a lot
of other OSError subclasses which are not defined at all, and having
TimeoutError is a bit inconsistent.
Note that ports can add anything to the builtins via MICROPY_PORT_BUILTINS.
And they can also define their own exceptions using the
MP_DEFINE_EXCEPTION() macro.
Previous behaviour is when this argument is set to "true", in which case
the function will raise any pending exception. Setting it to "false" will
cancel any pending exception.
Instances of the slice class are passed to __getitem__() on objects when
the user indexes them with a slice. In practice the majority of the time
(other than passing it on untouched) is to work out what the slice means in
the context of an array dimension of a particular length. Since Python 2.3
there has been a method on the slice class, indices(), that takes a
dimension length and returns the real start, stop and step, accounting for
missing or negative values in the slice spec. This commit implements such
a indices() method on the slice class.
It is configurable at compile-time via MICROPY_PY_BUILTINS_SLICE_INDICES,
disabled by default, enabled on unix, stm32 and esp32 ports.
This commit also adds new tests for slice indices and for slicing unicode
strings.
Implements text, rodata and bss generalised relocations, as well as generic
qstr-object linking. This allows importing dynamic native modules on all
supported architectures in a unified way.
This commit removes the Makefile-level MICROPY_FATFS config and moves the
MICROPY_VFS_FAT config to the Makefile level to replace it. It also moves
the include of the oofatfs source files in the build from each port to a
central place in extmod/extmod.mk.
For a port to enabled VFS FAT support it should now set MICROPY_VFS_FAT=1
at the level of the Makefile. This will include the relevant oofatfs files
in the build and set MICROPY_VFS_FAT=1 at the C (preprocessor) level.
For consistency with "umachine". Now that weak links are enabled
by default for built-in modules, this should be a no-op, but allows
extension of the bluetooth module by user code.
Also move registration of ubluetooth to objmodule rather than
port-specific.
This commit implements automatic module weak links for all built-in
modules, by searching for "ufoo" in the built-in module list if "foo"
cannot be found. This means that all modules named "ufoo" are always
available as "foo". Also, a port can no longer add any other weak links,
which makes strict the definition of a weak link.
It saves some code size (about 100-200 bytes) on ports that previously had
lots of weak links.
Some changes from the previous behaviour:
- It doesn't intern the non-u module names (eg "foo" is not interned),
which saves code size, but will mean that "import foo" creates a new qstr
(namely "foo") in RAM (unless the importing module is frozen).
- help('modules') no longer lists non-u module names, only the u-variants;
this reduces duplication in the help listing.
Weak links are effectively the same as having a set of symbolic links on
the filesystem that is searched last. So an "import foo" will search
built-in modules first, then all paths in sys.path, then weak links last,
importing "ufoo" if it exists. Thus a file called "foo.py" somewhere in
sys.path will still have precedence over the weak link of "foo" to "ufoo".
See issues: #1740, #4449, #5229, #5241.
This commit adds support for a second supported hash (currently set to the
4.0-beta1 tag). When this hash is detected, the relevant changes are
applied.
This allows to start using v4 features (e.g. BLE with Nimble), and also
start doing testing, while still supporting the original, stable, v3.3 IDF.
Note: this feature is experimental, not well tested, and network.LAN and
network.PPP are currently unsupported.
As per PEP 485, this function appeared in for Python 3.5. Configured via
MICROPY_PY_MATH_ISCLOSE which is disabled by default, but enabled for the
ports which already have MICROPY_PY_MATH_SPECIAL_FUNCTIONS enabled.
Replaces the `SDKCONFIG` makefile variable with `BOARD`. Defaults to
BOARD=GENERIC. spiram can be enabled with `BOARD=GENERIC_SPIRAM`
Add example definition for TINYPICO, currently identical to GENERIC_SPIRAM
but with custom board/SoC names for the uPy banner.
They are both enabled by default, but can be disabled by defining
MICROPY_HW_ENABLE_MDNS_QUERIES and/or MICROPY_HW_ENABLE_MDNS_RESPONDER to
0. The hostname for the responder is currently taken from
tcpip_adapter_get_hostname() but should eventually be configurable.
This adds support for SD cards using the ESP32's built-in hardware SD/MMC
host controller, over either the SDIO bus or SPI. The class is available
as machine.SDCard and using it can be as simple as:
uos.mount(machine.SDCard(), '/sd')
As mentioned in #4450, `websocket` was experimental with a single intended
user, `webrepl`. Therefore, we'll make this change without a weak
link `websocket` -> `uwebsocket`.