As I mentioned in issue #6310 while investigating that the Teensy port
did not support RS485_dir pin on normal GPIO pins, I found that it
was not implemented either as well on some other ports.
So was curious to implement it for RP2040 using same approach as I did
for the MIMXRT in the Pull Request #6328
That is I setup the specified pin as a normal GPIO pin in output mode
and then when you do a write operation it sets the GPIO pin logically
high, and when the write completes I set it logically low.
Note: knowing when I can set it low can be tricky, as you need to make
sure the full output has completed otherwise the data will be corrupted.
I am using: uart_tx_wait_blocking(self->uart);
Which looks like it is supposed to wait until the busy status is no
longer set, which the Reference manual mentioned, but this is leaving
the line logically set longer than I would like.
however I have tried running it with my hacked up version of the
Python Robotis DynamixelSDK and was able to talk to some AX servos.
I did have to change the library slightly for the RP2040, as the
library was erroring out when you did something like uart.read(5)
and it timed out without receiving anything. The RP2040 returned
None whereas I think the Teensy returned an empty set, which is what
it looks like the PySerial original code expects.
Not sure if anyone is interested in this, but thought i would
put it out as PR and see.
Now a 'once' and a 'loop' buffer can be specified.
'once' is useful for things like writing a neopixel strip in the background,
if you can guarantee the buffer contents are stable until the write is complete.
'loop' is useful for periodic things, like pwm & servos.
both together are useful for some special cases of pwm/servo, where a
transitional waveform needs to be played for one repetition and then
a new waveform needs to be played after that.
The API is renamed to reflect that it's a more generic 'background'
operation.
This is needed so that the floppy flux reader can enable the pull up
on the index pin while using it as a pio jmp pin.
Also fixes a doc bug where the `jmp_pin` was omitted in one spot in the docs.
This tweaks the RMT timing to better match the 1/3 and 2/3 of 800khz
guideline for timing. It also ensures a delay of 300 microseconds
with the line low before reset.
Pin reset is now changed to the IDF default which pulls the pin up
rather than CircuitPython's old behavior of floating the pin.
Fixes#5679
The port is free to return NULL for any/all of these, and the caller has
to check.
This will be used in the floppy code, because aside from getting the
registers, it looks like all is independent of MCU.
If, for some reason, you mix up TX and RX when calling `busio.UART` (who would do that ;) ), you get `Invalid pins`. When you go to try again, you'll get `All UART peripherals are in use` because the interface was claimed as busy before pins are verified. This should fix that issue.
This targets the 64-bit CPU Raspberry Pis. The BCM2711 on the Pi 4
and the BCM2837 on the Pi 3 and Zero 2W. There are 64-bit fixes
outside of the ports directory for it.
There are a couple other cleanups that were incidental:
* Use const mcu_pin_obj_t instead of omitting the const. The structs
themselves are const because they are in ROM.
* Use PTR <-> OBJ conversions in more places. They were found when
mp_obj_t was set to an integer type rather than pointer.
* Optimize submodule checkout because the Pi submodules are heavy
and unnecessary for the vast majority of builds.
Fixes#4314
By having a pair of buffers, the capture hardware can fill one buffer while
Python code (including displayio, etc) operates on the other buffer. This
increases the responsiveness of camera-using code.
On the Kaluga it makes the following improvements:
* 320x240 viewfinder at 30fps instead of 15fps using directio
* 240x240 animated gif capture at 10fps instead of 7.5fps
As discussed at length on Discord, the "usual end user" code will look like
this:
camera = ...
with camera.continuous_capture(buffer1, buffer2) as capture:
for frame in capture:
# Do something with frame
However, rather than presenting a context manager, the core code consists of
three new functions to start & stop continuous capture, and to get the next
frame. The reason is twofold. First, it's simply easier to implement the
context manager object in pure Python. Second, for more advanced usage, the
context manager may be too limiting, and it's easier to iterate on the right
design in Python code. In particular, I noticed that adapting the
JPEG-capturing programs to use continuous capture mode needed a change in
program structure.
The camera app was structured as
```python
while True:
if shutter button was just pressed:
capture a jpeg frame
else:
update the viewfinder
```
However, "capture a jpeg frame" needs to (A) switch the camera settings and (B)
capture into a different, larger buffer then (C) return to the earlier
settings. This can't be done during continuous capture mode. So just
restructuring it as follows isn't going to work:
```python
with camera.continuous_capture(buffer1, buffer2) as capture:
for frame in capture:
if shutter button was just pressed:
capture a jpeg frame, without disturbing continuous capture mode
else:
update the viewfinder
```
The continuous mode is only implemented in the espressif port; others
will throw an exception if the associated methods are invoked. It's not
impossible to implement there, just not a priority, since these micros don't
have enough RAM for two framebuffer copies at any resonable sizes.
The capture code, including single-shot capture, now take mp_obj_t in the
common-hal layer, instead of a buffer & length. This was done for the
continuous capture mode because it has to identify & return to the user the
proper Python object representing the original buffer. In the Espressif port,
it was convenient to implement single capture in terms of a multi-capture,
which is why I changed the singleshot routine's signature too.
At present, Adafruit's rotary encoders all move 1 quadrature cycle per
detent, so we originally hard-coded division-by-4. However, other
encoders exist, including ones without detents, ones with 2 detents per
cycle, and others with 4 detents per cycle.
The new `divisor` property and constructor argument allows selecting
a divisor of 1, 2, or 4; with the default of 4 giving backward
compatibility.
The property is not supported (yet?) on espressif MCUs; it throws an
error if a value other than 4 is set.