Now schedule is: for native types, we call ->make_new() C-level method, which
should perform actions of __new__ and __init__ (note that this is not
compliant, but is efficient), but for user types, __new__ and __init__ are
called as expected.
Also, make sure we convert scalar attribute value to a bound-pair tight in
mp_obj_class_lookup() method, which avoids converting it again and again in
its callers.
You can now do:
X = const(123)
Y = const(456 + X)
and the compiler will replace X and Y with their values.
See discussion in issue #266 and issue #573.
Need to have a policy as to how far we go adding keyword support to
built ins. It's nice to have, and gets better CPython compatibility,
but hurts the micro nature of uPy.
Addresses issue #577.
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
Of course, keywords are turned into lexer tokens in the lexer, so will
never need to be interned (unless you do something like x="def").
As it is now, the following on pyboard makes no new qstrs:
import pyb
pyb.info()
The logic appears to be that (at least beginning of) sys.versions is the
version of reference Python language implemented, not version of particular
implementation.
Also, bump set versions at 3.4.0, based on @dpgeorge preference.
Per https://docs.python.org/3.3/reference/import.html , this is the way to
tell module from package: "Specifically, any module that contains a __path__
attribute is considered a package." And it for sure will be needed to
implement relative imports.
Only calcsize() and unpack() functions provided so far, for little-endian
byte order. Format strings don't support repition spec (like "2b3i").
Unfortunately, dealing with all the various binary type sizes and alignments
will lead to quite a bloated "binary" helper functions - if optimizing for
speed. Need to think if using dynamic parametrized algos makes more sense.
These two are apprerently the most concise and efficient way to convert
int to/from bytes in Python. The alternatives are struct and array modules,
but methods using them are more verbose in Python code and less efficient
in memory/cycles.
This is to reduce ROM usage. stream_p is used in file and socket types
only (at the moment), so seems a good idea to make the protocol
functions a pointer instead of the actual structure.
It saves 308 bytes of ROM in the stmhal/ port, 928 in unix/.
It's not completely satisfactory, because a failed call to __getattr__
should not raise an exception.
__setattr__ could be implemented, but it would slow down all stores to a
user created object. Need to implement some caching system.