If sockets were open when calling soft reset, gc_sweep_all() would try to
close them. In case of e.g. the NINA WiFi handler, connected through SPI,
spi_transfer() would be called for command exchange with the NINA module.
But at that time SerCom was already disabled.
Moving sercom_deinit_all() behind gc_sweep_all() solves this issue.
Signed-off-by: robert-hh <robert@hammelrath.com>
Such that they are easier to adapt. The maximum code size is set by:
MICROPY_HW_CODESIZE=xxxK
in mpconfigmcu.mk for the MCU family as default or in mpconfigboard.mk for
a specific board. Setting the maximum code size allows the loader to error
out if the code gets larger than the space dedicated for it.
Signed-off-by: robert-hh <robert@hammelrath.com>
All ports that enable MICROPY_PY_MACHINE_PWM now enable these two
sub-options, so remove these sub-options altogether to force consistency in
new ports that implement machine.PWM.
Signed-off-by: Damien George <damien@micropython.org>
The PWM.init() method has been added. Calling init() without arguments
restarts a PWM channel stopped with deinit(). Otherwise single parameters
except for "device=n" can be changed again. The device can only be
specified once, either in the constructor or the first init() call.
Also simplify get_pwm_config() and get_adc_config(), and shrink the PWM
object.
Based on extmod/utime_mphal.c, with:
- a globals dict added
- time.localtime wrapper added
- time.time wrapper added
- time.time_ns function added
New configuration options are added for this module:
- MICROPY_PY_UTIME (enabled at basic features level)
- MICROPY_PY_UTIME_GMTIME_LOCALTIME_MKTIME
- MICROPY_PY_UTIME_TIME_TIME_NS
Signed-off-by: Damien George <damien@micropython.org>
Helps prevent the filesystem from getting formatted by mistake, among other
things. For example, on a Pico board, entering Ctrl+D and Ctrl+C fast many
times will eventually wipe the filesystem (without warning or notice).
Further rationale: Ctrl+C is used a lot by automation scripts (eg mpremote)
and UI's (eg Mu, Thonny) to get the board into a known state. If the board
is not responding for a short time then it's not possible to know if it's
just a slow start up (eg in _boot.py), or an infinite loop in the main
application. The former should not be interrupted, but the latter should.
The only way to distinguish these two cases would be to wait "long enough",
and if there's nothing on the serial after "long enough" then assume it's
running the application and Ctrl+C should break out of it. But defining
"long enough" is impossible for all the different boards and their possible
behaviour. The solution in this commit is to make it so that frozen
start-up code cannot be interrupted by Ctrl+C. That code then effectively
acts like normal C start-up code, which also cannot be interrupted.
Note: on the stm32 port this was never seen as an issue because all
start-up code is in C. But now other ports start to put more things in
_boot.py and so this problem crops up.
Signed-off-by: David Grayson <davidegrayson@gmail.com>
This is a best-effort implementation of write polling. It's difficult to
do correctly because if there are multiple output streams (eg UART and USB
CDC) then some may not be writeable while others are. A full solution
should also have a return value from mp_hal_stdout_tx_strn(), returning the
number of bytes written to the stream(s). That's also hard to define.
The renesas-ra and stm32 ports already implement a similar best-effort
mechanism for write polling.
Fixes issue #11026.
Signed-off-by: Damien George <damien@micropython.org>
Previously, setting MICROPY_HW_ENABLE_USBDEV to 0 caused build errors. The
change affects the nrf and samd ports as well, so MICROPY_HW_ENABLE_USBDEV
had to be explicitly enabled there.
The configuration options MICROPY_HW_ENABLE_USBDEV and
MICROPY_HW_ENABLE_UART_REPL are independent, and can be enabled or disabled
by a board.
Signed-off-by: Damien George <damien@micropython.org>
Even if boards do not have a clock crystal. In that case, the clock
quality will be very poor.
Always having machine.RTC means that the date/time can be set in a way that
is consistent with other ports.
This commit also removes the special code in modutime.c for devices without
the RTC class.
Signed-off-by: Damien George <damien@micropython.org>
This allows:
$ make BOARD_DIR=path/to/board
to infer BOARD=board, rather than the previous behavior that required
additionally setting BOARD explicitly.
Also makes the same change for VARIANT_DIR -> VARIANT on Unix.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Signed-off-by: Damien George <damien@micropython.org>
This RNG passes many of the Diehard tests and also the AIS31 test suite.
The RNG is quite slow, delivering 200bytes/s.
Tested on boards with and without a crystal.
It turned out that the result of calling ticks_us() was always either odd
or even, depending on some internal state during boot. So the us-counter
was set to a 2 MHz input and the result shifted by 1. The counting period
is still long enough, since internally a (now) 63 bit value is used for us.
By using the phase jitter between the DFLL48M clock and the FDPLL96M clock.
Even if both use the same reference source, they have a different jitter.
SysTick is driven by FDPLL96M, the us counter by DFLL48M. As a random
source, the us counter is read out on every SysTick and the value is used
to accumulate a simple multiply, add and xor register. According to tests
it creates about 30 bit random bit-flips per second. That mechanism will
pass quite a few RNG tests, has a suitable frequency distribution and
serves better than just the time after boot to seed the PRNG.
Allowing to increase the clock a little bit to 54Mhz. Not much of a gain,
but useful for generating a RNG entropy source from the jitter between
DFLL48M and FDPLL96M.
Remove two SPARKFUN_SAMD51_THINGS_PLUS pin definitions. There were
definitions of TXD and RXD, but these pins do not exist on the board. They
were only shown in the schematics.
Also remove any reference to LED_. This is just a text change, no
functional change.
For compatibility with other ports. Code increase up to ~1250 bytes for
SAMD21. The feature is configurable via MICROPY_PY_MACHINE_PIN_BOARD_CPU
in case flash memory is tight.
Before, both uwTick and mp_hal_ticks_ms() were used as clock source. That
assumes, that these two are synchronous and start with the same value,
which may be not the case for all ports. If the lag between uwTick and
mp_hal_ticks_ms() is larger than the timer interval, the timer would either
rush up until the times are synchronous, or not start until uwTick wraps
over.
As suggested by @dpgeorge, MICROPY_SOFT_TIMER_TICKS_MS is now used in
softtimer.c, which has to be defined in a port's mpconfigport.h with
the variable that holds the SysTick counter.
Note that it's not possible to switch everything in softtimer.c to use
mp_hal_ticks_ms() because the logic in SysTick_Handler that schedules
soft_timer_handler() uses (eg on mimxrt) the uwTick variable directly
(named systick_ms there), and mp_hal_ticks_ms() uses a different source
timer. Thus it is made fully configurable.
This drops the `.cpu` directive from the ARM gchelper_*.s files. Having
this directive breaks the linker when targeting older CPUs (e.g. `-mthumb
-mthumb-interwork` for `-mcpu=arm7tdmi`). The actual target CPU should be
determined by the compiler options.
The exact CPU doesn't actually matter, but rather the supported assembly
instruction set. So the files are renamed to *_thumb1.s and *thumb2.s to
indicate the instruction set support instead of the CPU support.
Signed-off-by: David Lechner <david@pybricks.com>
ADC: The argument of vref=num is an integer. Values for num are:
SAMD21:
0 INT1V 1.0V voltage reference
1 INTVCC0 1/1.48 Analog voltage supply
2 INTVCC1 1/2 Analog voltage supply (only for VDDANA > 2.0V)
3 VREFA External reference
4 VREFB External reference
SAMD51:
0 INTREF internal bandgap reference
1 INTVCC1 Analog voltage supply
2 INTVCC0 1/2 Analog voltage supply (only for VDDANA > 2.0v)
3 AREFA External reference A
4 AREFB External reference B
5 AREFC External reference C (ADC1 only)
DAC: The argument of vref=num is an integer. Suitable values:
SAMD21:
0 INT1V Internal voltage reference
1 VDDANA Analog voltage supply
2 VREFA External reference
SAMD51:
0 INTREF Internal bandgap reference
1 VDDANA Analog voltage supply
2 VREFAU Unbuffered external voltage reference (not buffered in DAC)
4 VREFAB Buffered external voltage reference (buffered in DAC).
Changes in this commit:
- Do not deinit IRQ when uart.deinit() is called with an inactive object.
- Remove using it for the finaliser. There is another machanism for soft
reset, and it is not needed otherwise.
- Do not tag the UART buffers with MP_STATE_PORT, it is not required.
Clearing the DRE flag for the transmit interrupt at the end of a
uart.write() also cleared the RXC flag disabling the receive interrupt.
This commit also changes the flag set/clear mechanism in the driver for SPI
as well, even if it did not cause a problem there. But at least it saves a
few bytes of code.
Applies to both SPI and I2C. The underflow caused high baudrate settings
resulting in the lowest possible baudrate. The overflow resulted in
erratic baudrates, not just the lowest possible.
If USB CDC is connected and the board sends data, but the host does not
receive the data, the device locks up. This is fixed in this commit by
having a timeout of 500ms, after which time the transmission is skipped.
Most of the content of README.md became obsolete and was replaced by the
documentation of MicroPython. Instead, README.md now shows build
instructions like the other ports.
Including the uasyncio scripts and the drivers for DHT, DS18x20 and
onewire. The uasyncio scripts need about 8k of flash and are not included
for the SAMD21 boards by default.
Protect SerCom (UART, SPI, I2C) objects from getting freed by the GC when
they go out of scope without being deinitialized. Otherwise the ISR of a
Sercom may access an invalid data structure.
Any update of freq or duty_cycle requires the previous PWM cycle to be
finished. Otherwise the new settings are not accepted.
Other changes in this commit:
- Report the set duty cycles even when the PWM is not yet started.
- pwm.freq(0) stops the pwm device, instead of raising an expception.
- Clear the duty cycle value cache on soft reset.