This patch allows the following code to run without allocating on the heap:
super().foo(...)
Before this patch such a call would allocate a super object on the heap and
then load the foo method and call it right away. The super object is only
needed to perform the lookup of the method and not needed after that. This
patch makes an optimisation to allocate the super object on the C stack and
discard it right after use.
Changes in code size due to this patch are:
bare-arm: +128
minimal: +232
unix x64: +416
unix nanbox: +364
stmhal: +184
esp8266: +340
cc3200: +128
The common cases for inheritance are 0 or 1 parent types, for both built-in
types (eg built-in exceptions) as well as user defined types. So it makes
sense to optimise the case of 1 parent type by storing just the type and
not a tuple of 1 value (that value being the single parent type).
This patch makes such an optimisation. Even though there is a bit more
code to handle the two cases (either a single type or a tuple with 2 or
more values) it helps reduce overall code size because it eliminates the
need to create a static tuple to hold single parents (eg for the built-in
exceptions). It also helps reduce RAM usage for user defined types that
only derive from a single parent.
Changes in code size (in bytes) due to this patch:
bare-arm: -16
minimal (x86): -176
unix (x86-64): -320
unix nanbox: -384
stmhal: -64
cc3200: -32
esp8266: -108
This patch changes mp_uint_t to size_t for the len argument of the
following public facing C functions:
mp_obj_tuple_get
mp_obj_list_get
mp_obj_get_array
These functions take a pointer to the len argument (to be filled in by the
function) and callers of these functions should update their code so the
type of len is changed to size_t. For ports that don't use nan-boxing
there should be no change in generate code because the size of the type
remains the same (word sized), and in a lot of cases there won't even be a
compiler warning if the type remains as mp_uint_t.
The reason for this change is to standardise on the use of size_t for
variables that count memory (or memory related) sizes/lengths. It helps
builds that use nan-boxing.
Allows to iterate over the following without allocating on the heap:
- tuple
- list
- string, bytes
- bytearray, array
- dict (not dict.keys, dict.values, dict.items)
- set, frozenset
Allows to call the following without heap memory:
- all, any, min, max, sum
TODO: still need to allocate stack memory in bytecode for iter_buf.
This patch implements support for class methods __delattr__ and __setattr__
for customising attribute access. It is controlled by the config option
MICROPY_PY_DELATTR_SETATTR and is disabled by default.
This allows to define an abstract base class which would translate
C-level protocol to Python method calls, and any subclass inheriting
from it will support this feature. This in particular actually enables
recently introduced machine.PinBase class.
The first argument to the type.make_new method is naturally a uPy type,
and all uses of this argument cast it directly to a pointer to a type
structure. So it makes sense to just have it a pointer to a type from
the very beginning (and a const pointer at that). This patch makes
such a change, and removes all unnecessary casting to/from mp_obj_t.
This patch changes the type signature of .make_new and .call object method
slots to use size_t for n_args and n_kw (was mp_uint_t. Makes code more
efficient when mp_uint_t is larger than a machine word. Doesn't affect
ports when size_t and mp_uint_t have the same size.
Note that even though wrapped in MICROPY_CPYTHON_COMPAT, it is not
fully compatible because the modifications to the dictionary do not
propagate to the actual instance members.
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.
This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
mp_obj_get_int_truncated will raise a TypeError if the argument is not
an integral type. Use mp_obj_int_get_truncated only when you know the
argument is a small or big int.
Hashing is now done using mp_unary_op function with MP_UNARY_OP_HASH as
the operator argument. Hashing for int, str and bytes still go via
fast-path in mp_unary_op since they are the most common objects which
need to be hashed.
This lead to quite a bit of code cleanup, and should be more efficient
if anything. It saves 176 bytes code space on Thumb2, and 360 bytes on
x86.
The only loss is that the error message "unhashable type" is now the
more generic "unsupported type for __hash__".
Previous to this patch the printing mechanism was a bit of a tangled
mess. This patch attempts to consolidate printing into one interface.
All (non-debug) printing now uses the mp_print* family of functions,
mainly mp_printf. All these functions take an mp_print_t structure as
their first argument, and this structure defines the printing backend
through the "print_strn" function of said structure.
Printing from the uPy core can reach the platform-defined print code via
two paths: either through mp_sys_stdout_obj (defined pert port) in
conjunction with mp_stream_write; or through the mp_plat_print structure
which uses the MP_PLAT_PRINT_STRN macro to define how string are printed
on the platform. The former is only used when MICROPY_PY_IO is defined.
With this new scheme printing is generally more efficient (less layers
to go through, less arguments to pass), and, given an mp_print_t*
structure, one can call mp_print_str for efficiency instead of
mp_printf("%s", ...). Code size is also reduced by around 200 bytes on
Thumb2 archs.
This simplifies the API for objects and reduces code size (by around 400
bytes on Thumb2, and around 2k on x86). Performance impact was measured
with Pystone score, but change was barely noticeable.
Despite initial guess, this code factoring does not hamper performance.
In fact it seems to improve speed by a little: running pystone(1.2) on
pyboard (which gives a very stable result) this patch takes pystones
from 1729.51 up to 1742.16. Also, pystones on x64 increase by around
the same proportion (but it's much noisier).
Taking a look at the generated machine code, stack usage with this patch
is unchanged, and call is tail-optimised with all arguments in
registers. Code size decreases by about 50 bytes on Thumb2 archs.
Eg, "() + 1" now tells you that __add__ is not supported for tuple and
int types (before it just said the generic "binary operator"). We reuse
the table of names for slot lookup because it would be a waste of code
space to store the pretty name for each operator.
Previous patch c38dc3ccc76d1a9bf867704f43ea5d15da3fea7b allowed any
object to be compared with any other, using pointer comparison for a
fallback. As such, existing code which checked for this case is no
longer needed.
This is a simple optimisation inspired by JITing technology: we cache in
the bytecode (using 1 byte) the offset of the last successful lookup in
a map. This allows us next time round to check in that location in the
hash table (mp_map_t) for the desired entry, and if it's there use that
entry straight away. Otherwise fallback to a normal map lookup.
Works for LOAD_NAME, LOAD_GLOBAL, LOAD_ATTR and STORE_ATTR opcodes.
On a few tests it gives >90% cache hit and greatly improves speed of
code.
Disabled by default. Enabled for unix and stmhal ports.