It doesn't need never reset because the status LED is only active
when user code isn't.
This also fixes PWM never reset on espressif so that deinit will
undo it.
Fixes#6223
danh and microdev1 noticed that this ignore pattern was over-broad
and caused added sdkconfig files in boards/ (which should be committed)
to be ignored and not proposed for addition by common tools like
git status, git gui, etc.
This pattern anchors the search so that it only matches in the
ports/espressif directory, so ports/espressif/sdkconfig is ignored
but ports/espressif/boards/example/sdkconfig is not ignored anymore
This adds the __cause__, __context__ and __suppress_context__
members to exception objects and makes e.g., `raise exc from cause`
set them in the same way as standard Python.
This needs thorough testing before it's merged, as we tried
and reverted this once before (#5341 and #5356).
I think that besides checking for tinyusb having "something to do",
the fact that `port_interrupt_after_ticks` and `port_disable_tick`
weren't implemented that was causing a secondary problem.
I've tested this on a pico w over reboot-cycles and ctrl-c-cycles,
with and without drive automounting, with and without serial repl open,
and on a power-only connection.
I didn't notice the problem reported in #5356 after merely implementing
port_idle_until_interrupt; but I did notice that sleeps in general would
take over-long until "something" (like writing to the USB drive) happened;
I think "something" was probably calling port_enable_tick(). When this
problem was happening, sleeps would take a lot longer; for instance,
`sleep(.001)` would take about 1/20s and `sleep(.1)` would take about 1/7s.
.. a fast helper for animations. It is similar to and inspired by the
PixelMap helper in Adafruit LED Animation library, but with an extremely
fast 'paste' method for setting a series of pixels. This is a common
operation for many animations, and can give a substantial speed improvement.
It's named `adafruit_pixelmap` so that we can package a compatible version
in pure Python for systems that can't fit it in C in flash, or for
Blinka.
This is a proof of concept and can make a very fast comet animation:
```python
import time
import adafruit_pixelbuf
import adafruti_pixelmap
import board
import neopixel
from supervisor import ticks_ms
from adafruit_led_animation.animation.solid import Solid
from adafruit_led_animation import color
pixel_pin = board.GP0
pixel_num = 96
pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=1, auto_write=False, pixel_order="RGB")
evens = adafruit_pixelmap.PixelMap(pixels, tuple(range(0, pixel_num, 2)))
odd_indices = tuple((i, i+2) for i in range(1, pixel_num, 4))
print(odd_indices)
odds = adafruit_pixelbuf.PixelMap(pixels, odd_indices)
assert len(odds) == len(odd_indices)
comet_length = 16
comet1 = [color.calculate_intensity(color.GREEN, ((1+i) / comet_length) ** 2.4)
for i in range(comet_length)]
comet2 = [color.calculate_intensity(color.PURPLE, ((1+i) / comet_length) ** 2.4)
for i in range(comet_length)]
pos1 = 0
pos2 = 96//4
while True:
evens.paste(comet1, pos1, wrap=True, reverse=False, others=0)
pos1 = (pos1 + 1) % len(evens)
odds.paste(comet2, pos2, wrap=True, reverse=True, others=0)
pos2 = (pos2 - 1) % len(odds)
pixels.show()
m = ticks_ms()
if m % 2000 > 1000:
time.sleep(.02)
```
Because this must be treated like an in-use pin for all other purposes,
unfortunately a special case must be added in shared-bindings.
Multiple AnalogIn objects for VOLTAGE_MONITOR can be created (because
in use tracking isn't working) but this causes no harm.
Testing performed: Read the monitor, then imported wifi. When the
pin state was insufficiently restored, the second step would fail
with debug messages about do_ioctl timeout.
```
import analogio, board
a = analogio.AnalogIn(board.VOLTAGE_MONITOR)
print(a.value)
import wifi
```
Closes: #7020