For an unconnected TCP socket, poll should return WR|HUP and read should
raise ENOTCONN. This is implemented by this commit and now the following
tests pass on esp32: extmod/usocket_tcp_basic.py,
net_hosted/connect_poll.py.
Signed-off-by: Damien George <damien@micropython.org>
It was noticed that the esp32 port didn't build ulab correctly. The
problem was a multiple defintion of the 'mp_hal_stdout_tx_str' and
'mp_hal_stdout_tx_strn_cooked' functions.
They were defined in stdout_helpers.c but also in the
ports/esp32/mphalport.c.
Fixed by removing stdout_helpers.c from the build.
Signed-off-by: Michael O'Cleirigh <michael.ocleirigh@rivulet.ca>
Support for User C and C++ modules was lost due to upgrading the esp32 to
the latest CMake based IDF from the GNUMakefile build process.
Restore the support for the esp32 port by integrating with the approach
recently added for the rp2 port.
Signed-off-by: Michael O'Cleirigh <michael.ocleirigh@rivulet.ca>
This commit fixes two issues on the esp32:
- it enables machine.soft_reset() to be called in main.py;
- it enables machine.reset_cause() to correctly identify a soft reset.
The former is useful in that it enables soft resets in applications that
are started at boot time. The support is patterned after the stm32 port.
This commit implements basic NVS support for the esp32. It follows the
pattern of the esp32.Partition class and exposes an NVS object per NVS
namespace. The initial support provided is only for signed 32-bit integers
and binary blobs. It's easy (albeit a bit tedious) to add support for
more types.
See discussions in: #4436, #4707, #6780
This enables -Os for compilation, but still keeps full assertion messages.
With IDF v4.2, -Os changes the GENERIC firmware size from 1512176 down to
1384640, and the GENERIC_SPIRAM firmware is now 1452320 which fits in the
allocated partition.
Signed-off-by: Damien George <damien@micropython.org>
The underlying OS (the ESP-IDF) uses it's own internal errno codes and so
it's simpler and cleaner to use those rather than trying to convert
everything to the values defined in py/mperrno.h.
It's now replaced by cmake/idf.py. But a convenience Makefile is still
provided with traditional targets like "all" and "deploy".
Signed-off-by: Damien George <damien@micropython.org>
This commit adds support for building the esp32 port with cmake, and in
particular it builds MicroPython as a component within the ESP-IDF. Using
cmake and the ESP-IDF build infrastructure makes it much easier to maintain
the port, especially with the various new ESP32 MCUs and their required
toolchains.
Signed-off-by: Damien George <damien@micropython.org>
The "word" referred to by BYTES_PER_WORD is actually the size of mp_obj_t
which is not always the same as the size of a pointer on the target
architecture. So rename this config value to better reflect what it
measures, and also prefix it with MP_.
For uses of BYTES_PER_WORD in setting the stack limit this has been
changed to sizeof(void *), because the stack usually grows with
machine-word sized values (eg an nlr_buf_t has many machine words in it).
Signed-off-by: Damien George <damien@micropython.org>
To simplify config, there's no need to specify MP_PLAT_PRINT_STRN if it's
the same as the default definition in py/mpconfig.h.
Signed-off-by: Damien George <damien@micropython.org>
Hardware I2C implementations must provide a .init() protocol method if they
want to support reconfiguration. Otherwise the default is that i2c.init()
raises an OSError (currently the case for all ports).
mp_machine_soft_i2c_locals_dict is renamed to mp_machine_i2c_locals_dict to
match the generic SPI bindings.
Fixes issue #6623 (where calling .init() on a HW I2C would crash).
Signed-off-by: Damien George <damien@micropython.org>
Support building .cpp files and linking them into the micropython
executable in a way similar to how it is done for .c files. The main
incentive here is to enable user C modules to use C++ files (which are put
in SRC_MOD_CXX by py.mk) since the core itself does not utilize C++.
However, to verify build functionality a unix overage test is added. The
esp32 port already has CXXFLAGS so just add the user modules' flags to it.
For the unix port use a copy of the CFLAGS but strip the ones which are not
usable for C++.
For seeding, the RNG function of the ESP-IDF is used, which is told to be a
true RNG, at least when WiFi or Bluetooth is enabled. Seeding on import is
as per CPython. To obtain a reproducible sequence of pseudo-random numbers
one must explicitly seed with a known value.
It requires mp_hal_time_ns() to be provided by a port. This function
allows very accurate absolute timestamps.
Enabled on unix, windows, stm32, esp8266 and esp32.
Signed-off-by: Damien George <damien@micropython.org>
With a warning that this way of constructing software I2C/SPI is
deprecated. The check and warning will be removed in a future release.
This should help existing code to migrate to the new SoftI2C/SoftSPI types.
Signed-off-by: Damien George <damien@micropython.org>
Previous commits removed the ability for one I2C/SPI constructor to
construct both software- or hardware-based peripheral instances. Such
construction is now split to explicit soft and non-soft types.
This commit makes both types available in all ports that previously could
create both software and hardware peripherals: machine.I2C and machine.SPI
construct hardware instances, while machine.SoftI2C and machine.SoftSPI
create software instances.
This is a breaking change for use of software-based I2C and SPI. Code that
constructed I2C/SPI peripherals in the following way will need to be
changed:
machine.I2C(-1, ...) -> machine.SoftI2C(...)
machine.I2C(scl=scl, sda=sda) -> machine.SoftI2C(scl=scl, sda=sda)
machine.SPI(-1, ...) -> machine.SoftSPI(...)
machine.SPI(sck=sck, mosi=mosi, miso=miso)
-> machine.SoftSPI(sck=sck, mosi=mosi, miso=miso)
Code which uses machine.I2C and machine.SPI classes to access hardware
peripherals does not need to change.
Signed-off-by: Damien George <damien@micropython.org>
The SoftSPI constructor is now used soley to create SoftSPI instances, it
can no longer delegate to create a hardware-based SPI instance.
Signed-off-by: Damien George <damien@micropython.org>
The SoftI2C constructor is now used soley to create SoftI2C instances, it
can no longer delegate to create a hardware-based I2C instance.
Signed-off-by: Damien George <damien@micropython.org>
Also rename machine_i2c_type to mp_machine_soft_i2c_type. These changes
make it clear that it's a soft-I2C implementation, and match SoftSPI.
Signed-off-by: Damien George <damien@micropython.org>
For time-based functions that work with absolute time there is the need for
an Epoch, to set the zero-point at which the absolute time starts counting.
Such functions include time.time() and filesystem stat return values. And
different ports may use a different Epoch.
To make it clearer what functions use the Epoch (whatever it may be), and
make the ports more consistent with their use of the Epoch, this commit
renames all Epoch related functions to include the word "epoch" in their
name (and remove references to "2000").
Along with this rename, the following things have changed:
- mp_hal_time_ns() is now specified to return the number of nanoseconds
since the Epoch, rather than since 1970 (but since this is an internal
function it doesn't change anything for the user).
- littlefs timestamps on the esp8266 have been fixed (they were previously
off by 30 years in nanoseconds).
Otherwise, there is no functional change made by this commit.
Signed-off-by: Damien George <damien@micropython.org>
To portably get the Epoch. This is simply aliased to localtime() on ports
that are not timezone aware.
Signed-off-by: Damien George <damien@micropython.org>