The Wiznet5k series of chips support a MACRAW mode which allows the host to
send and receive Ethernet frames directly. This can be hooked into the
lwIP stack to provide a full "socket" implementation using this Wiznet
Ethernet device. This patch adds support for this feature.
To enable the feature one must add the following to mpconfigboard.mk, or
mpconfigport.mk:
MICROPY_PY_WIZNET5K = 5500
and the following to mpconfigboard.h, or mpconfigport.h:
#define MICROPY_PY_LWIP (1)
After wiring up the module (X5=CS, X4=RST), usage on a pyboard is:
import time, network
nic = network.WIZNET5K(pyb.SPI(1), pyb.Pin.board.X5, pyb.Pin.board.X4)
nic.active(1)
while not nic.isconnected():
time.sleep_ms(50) # needed to poll the NIC
print(nic.ifconfig())
Then use the socket module as usual.
Compared to using the built-in TCP/IP stack on the Wiznet module, some
performance is lost in MACRAW mode: with a lot of memory allocated to lwIP
buffers, lwIP gives Around 750,000 bytes/sec max TCP download, compared
with 1M/sec when using the TCP/IP stack on the Wiznet module.
It should be up to the NIC itself to decide if the network interface is
removed upon soft reset. Some NICs can keep the interface up over a soft
reset, which improves usability of the network.
Pins with multiple alt-funcs for the same peripheral (eg USART_CTS_NSS)
need to be split into individual alt-funcs for make-pins.py to work
correctly.
This patch changes the following:
- Split `..._CTS_NSS` into `..._CTS/..._NSS`
- Split `..._RTS_DE` into `..._RTS/..._DE`
- Split `JTDO_SWO` into `JTDO/TRACESWO` for consistency
- Fixed `TRACECK` to `TRACECLK` for consistency
If no block devices are defined by a board then storage support will be
disabled. This means there is no filesystem provided by either the
internal flash or external SPI flash. But the VFS system can still be
enabled and filesystems provided on external devices like an SD card.
Mboot is a custom bootloader for STM32 MCUs. It can provide a USB DFU
interface on either the FS or HS peripherals, as well as a custom I2C
bootloader interface.
These files provide no additional information, all the version and license
information is captured in the relevant files in these subdirectories.
Thanks to @JoeSc for the original patch.
This patch allows to use lwIP as the implementation of the usocket module,
instead of the existing socket-multiplexer that delegates the entire TCP/IP
layer to the NIC itself.
This is disabled by default, and enabled by defining MICROPY_PY_LWIP to 1.
When enabled, the lwIP TCP/IP stack will be included in the build with
default settings for memory usage and performance (see
lwip_inc/lwipopts.h). It is then up to a particular NIC to register itself
with lwIP using the standard lwIP netif API.
This patch adds the configuration MICROPY_HW_USB_ENABLE_CDC2 which enables
a new USB device configuration at runtime: VCP+VCP+MSC. It will give two
independent VCP interfaces available via pyb.USB_VCP(0) and pyb.USB_VCP(1).
The first one is the usual one and has the REPL on it. The second one is
available for general use.
This configuration is disabled by default because if the mode is not used
then it takes up about 2200 bytes of RAM. Also, F4 MCUs can't support this
mode on their USB FS peripheral (eg PYBv1.x) because they don't have enough
endpoints. The USB HS peripheral of an F4 supports it, as well as both the
USB FS and USB HS peripherals of F7 MCUs.
The documentation (including the examples) for elapsed_millis and
elapsed_micros can be found in docs/library/pyb.rst so doesn't need to be
written in full in the source code.
When disabled, the pyb.I2C class saves around 8k of code space and 172
bytes of RAM. The same functionality is now available in machine.I2C
(for F4 and F7 MCUs).
It is still enabled by default.
This driver uses low-level register access to control the I2C peripheral
(ie it doesn't rely on the ST HAL) and provides the same C-level API as the
existing F7 hardware driver.