Tested & working:
* Send standard packets
* Receive standard packets (1 FIFO, no filter)
Interoperation between SAM E54 Xplained running this tree and
MicroPython running on STM32F405 Feather with an external
transceiver was also tested.
Many other aspects of a full implementation are not yet present,
such as error detection and recovery.
The font is missing many characters and the build needs the space.
We can optimize font storage when we get a good font.
The serial output will work as usual.
Testing performed: That a card is successfully mounted on Pygamer with
the built in SD card slot
This module is enabled for most FULL_BUILD boards, but is disabled for
samd21 ("M0"), litex, and pca10100 for various reasons.
I noticed that this code was referring to samd-specific functionality,
and isn't enabled except in one samd board (pewpew10). Move it.
There is incomplte support for _pew in mimxrt10xx which then caused build
errors; adding a #if guard to check for _pew being enabled fixes it.
The _pew module is not likely to be important on mimxrt but I'll leave the
choice to remove it to someone else.
* Fix flash writes that don't end on a sector boundary. Fixes#2944
* Fix enum incompatibility with IDF.
* Fix printf output so it goes out debug UART.
* Increase stack size to 8k.
* Fix sleep of less than a tick so it doesn't crash.
vectorio builds on m4 express feather
Concrete shapes are composed into a VectorShape which is put into a displayio Group for display.
VectorShape provides transpose and x/y positioning for shape implementations.
Included Shapes:
* Circle
- A radius; Circle is positioned at its axis in the VectorShape.
- You can freely modify the radius to grow and shrink the circle in-place.
* Polygon
- An ordered list of points.
- Beteween each successive point an edge is inferred. A final edge closing the shape is inferred between the last
point and the first point.
- You can modify the points in a Polygon. The points' coordinate system is relative to (0, 0) so if you'd like a
top-center justified 10x20 rectangle you can do points [(-5, 0), (5, 0), (5, 20), (0, 20)] and your VectorShape
x and y properties will position the rectangle relative to its top center point
* Rectangle
A width and a height.
This adds initial support for an AES module named aesio. This
implementation supports only a subset of AES modes, namely
ECB, CBC, and CTR modes.
Example usage:
```
>>> import aesio
>>>
>>> key = b'Sixteen byte key'
>>> cipher = aesio.AES(key, aesio.MODE_ECB)
>>> output = bytearray(16)
>>> cipher.encrypt_into(b'Circuit Python!!', output)
>>> output
bytearray(b'E\x14\x85\x18\x9a\x9c\r\x95>\xa7kV\xa2`\x8b\n')
>>>
```
This key is 16-bytes, so it uses AES128. If your key is 24- or 32-
bytes long, it will switch to AES192 or AES256 respectively.
This has been tested with many of the official NIST test vectors,
such as those used in `pycryptodome` at
39626a5b01/lib/Crypto/SelfTest/Cipher/test_vectors/AES
CTR has not been tested as NIST does not provide test vectors for it.
Signed-off-by: Sean Cross <sean@xobs.io>
This gets all the purely internal references. Some uses of
protomatter/Protomatter/PROTOMATTER remain, as they are references
to symbols in the Protomatter C library itself.
I originally believed that there would be a wrapper library around it,
like with _pixelbuf; but this proves not to be the case, as there's
too little for the library to do.