The array should be of type unsigned byte because that is the type of the
values being stored. And changing to uint8_t helps to prevent warnings
from some static analysers.
Note that the check for elem!=NULL is removed for the
MP_MAP_LOOKUP_ADD_IF_NOT_FOUND case because mp_map_lookup will always
return non-NULL for such a case.
The calls to rtc_init_start(), sdcard_init() and storage_init() are all
guarded by a check for first_soft_reset, so it's simpler to just put them
all before the soft-reset loop, without the check.
The call to machine_init() can also go before the soft-reset loop because
it is only needed to check the reset cause which can happen once at the
first boot. To allow this to work, the reset cause must be set to SOFT
upon a soft-reset, which is the role of the new function machine_deinit().
Upon boot the RTC early-init function should detect if LSE or LSI is
already selected/running and, if so, use it. When the LSI has previously
(in the previous reset cycle) been selected as the clock source the only
way to reliably tell is if the RTCSEL bits of the RCC_BDCR are set to the
correct LSI value. In particular the RCC_CSR bits for LSI control do not
indicate if the LSI is ready even if it is selected.
This patch removes the check on the RCC_CSR bits for the LSI being on and
ready and only uses the check on the RCC_BDCR to see if the LSI should be
used straightaway. This was tested on a PYBLITEv1.0 and with the patch the
LSI persists correctly as the RTC source as long as the backup domain
remains powered.
Previously, if LSE is selected but fails and the RTC falls back to LSI,
then the rtc_info flags would incorrectly state that LSE is used. This
patch fixes that by setting the bit in rtc_info only after the clock is
ready.
There is an underlying hardware SPI driver (built on top of the STM HAL)
and then on top of this sits the legacy pyb.SPI class as well as the
machine.SPI class. This patch improves the separation between these
layers, in particular decoupling machine.SPI from pyb.SPI.
This patch combines the compiler optimisation code for double and triple
tuple-to-tuple assignment, taking it from two separate if-blocks to one
combined if-block. This can be done because the code for both of these
optimisations has a lot in common. Combining them together reduces code
size for ports that have the triple-tuple optimisation enabled (and doesn't
change code size for ports that have it disabled).
The SPI sub-system is independent from the uPy state (eg the heap) and so
can safely persist across a soft reset. And this is actually necessary for
drivers that rely on SPI and that also need to persist across soft reset
(eg external SPI flash memory).
This patch adds support in the USBD configuration and CDC-MSC-HID class for
high-speed USB mode. To enable it the board configuration must define
USE_USB_HS, and either not define USE_USB_HS_IN_FS, or be an STM32F723 or
STM32F733 MCU which have a built-in HS PHY. High-speed mode is then
selected dynamically by passing "high_speed=True" to the pyb.usb_mode()
function, otherwise it defaults to full-speed mode.
This patch has been tested on an STM32F733.
By defining MICROPY_HW_USB_MAIN_DEV a given board can select to use either
USB_PHY_FS_ID or USB_PHY_HS_ID as the main USBD peripheral, on which the
REPL will appear. If not defined this will be automatically configured.
There's no need to have these as separate functions, they just take up
unnecessary code space and combining them allows to factor common code, and
also allows to support arbitrary string descriptor indices.
The routine waits for the DMA to finish, which is signalled from a DMA IRQ
handler. Using WFI makes the CPU sleep while waiting for the IRQ to arrive
which decreases power consumption. To make it work correctly the check for
the change in state must be atomic and so IRQs must be disabled during the
check. The key feature of the Cortex MCU that makes this possible is that
WFI will exit when an IRQ arrives even if IRQs are disabled.
CPython doesn't allow SEEK_CUR with non-zero offset for files in text mode,
and uPy inherited this behaviour for both text and binary files. It makes
sense to provide full support for SEEK_CUR of binary-mode files in uPy, and
to do this in a minimal way means also allowing to use SEEK_CUR with
non-zero offsets on text-mode files. That seems to be a fair compromise.
Build and test 32bit and 64bit versions of the windows port using gcc
from mingw-w64. Note a bunch of tests which rely on floating point
math/printing have been disabled for now since they fail.
This commit fixes two things:
1. Do not allocate on the heap in readblocks() - unless the block size
is bigger than 512 bytes.
2. Raise an error instead of returning 1 to indicate an error: the FAT
block device layer does not check the return value. And other
backends (e.g. esp32 blockdev) also raise an error instead of
returning non-zero.
The number of registers used should be 10, not 12, to match the assembly
code in nlrx64.c. With this change the 64bit mingw builds don't need to
use the setjmp implementation, and this fixes miscellaneous crashes and
assertion failures as reported in #1751 for instance.
To avoid mistakes in the future where something gcc-related for Windows
only gets fixed for one particular compiler/environment combination,
make use of a MICROPY_NLR_OS_WINDOWS macro.
To make sure everything nlr-related is now ok when built with gcc this
has been verified with:
- unix port built with gcc on Cygwin (i686-pc-cygwin-gcc and
x86_64-pc-cygwin-gcc, version 6.4.0)
- windows port built with mingw-w64's gcc from Cygwin
(i686-w64-mingw32-gcc and x86_64-w64-mingw32-gcc, version 6.4.0)
and MSYS2 (like the ones on Cygwin but version 7.2.0)
Add some features which are already enabled in the unix port and
default to using the Python stack for scoped allocations: this can be
more performant in cases the heap is heavily used because for example
the memory needed for storing *args and **kwargs doesn't require
scanning the heap to find a free block.
For MSVC off_t is defined in sys/types.h but according to the comment
earlier in mpconfigport.h this cannot be included directly.
So just make off_t the same as mp_off_t.
This fixes the build for MSVC with MICROPY_STREAMS_POSIX_API
enabled because stream.h uses off_t.
There are two checks that are always false so can be converted to (negated)
assertions to save code space and execution time. They are:
1. The check of the str parameter, which is required to be non-NULL as per
the original comment that it has enough space in it as calculated by
mp_int_format_size. And for all uses of this function str is indeed
non-NULL.
2. The check of the base parameter, which is already required to be between
2 and 16 (inclusive) via the assertion in mp_int_format_size.
The motivation behind this patch is to remove unreachable code in mpn_div.
This unreachable code was added some time ago in
9a21d2e070c9ee0ef2c003f3a668e635c6ae4401, when a loop in mpn_div was copied
and adjusted to work when mpz_dig_t was exactly half of the size of
mpz_dbl_dig_t (a common case). The loop was copied correctly but it wasn't
noticed at the time that the final part of the calculation of num-quo*den
could be optimised, and hence unreachable code was left for a case that
never occurred.
The observation for the optimisation is that the initial value of quo in
mpn_div is either exact or too large (never too small), and therefore the
subtraction of quo*den from num may subtract exactly enough or too much
(but never too little). Using this observation the part of the algorithm
that handles the borrow value can be simplified, and most importantly this
eliminates the unreachable code.
The new code has been tested with DIG_SIZE=3 and DIG_SIZE=4 by dividing all
possible combinations of non-negative integers with between 0 and 3
(inclusive) mpz digits.