Protocols are nice, but there is no way for C code to verify whether
a type's "protocol" structure actually implements some particular
protocol. As a result, you can pass an object that implements the
"vfs" protocol to one that expects the "stream" protocol, and the
opposite of awesomeness ensues.
This patch adds an OPTIONAL (but enabled by default) protocol identifier
as the first member of any protocol structure. This identifier is
simply a unique QSTR chosen by the protocol designer and used by each
protocol implementer. When checking for protocol support, instead of
just checking whether the object's type has a non-NULL protocol field,
use `mp_proto_get` which implements the protocol check when possible.
The existing protocols are now named:
protocol_framebuf
protocol_i2c
protocol_pin
protocol_stream
protocol_spi
protocol_vfs
(most of these are unused in CP and are just inherited from MP; vfs and
stream are definitely used though)
I did not find any crashing examples, but here's one to give a flavor of what
is improved, using `micropython_coverage`. Before the change,
the vfs "ioctl" protocol is invoked, and the result is not intelligible
as json (but it could have resulted in a hard fault, potentially):
>>> import uos, ujson
>>> u = uos.VfsPosix('/tmp')
>>> ujson.load(u)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: syntax error in JSON
After the change, the vfs object is correctly detected as not supporting
the stream protocol:
>>> ujson.load(p)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OSError: stream operation not supported
As per discussion in #2449, using write requests instead of read requests
for I2C.scan() seems to support a larger number of devices, especially
ones that are write-only. Even a read-only I2C device has to implement
writes in order to be able to receive the address of the register to read.
The memory read/write I2C functions now take an optional keyword-only
parameter that specifies the number of bits in the memory address.
Only mem-addrs that are a multiple of 8-bits are supported (otherwise
the behaviour is undefined).
Due to the integer type used for the address, for values larger than 32
bits, only 32 bits of address will be sent, and the rest will be padded
with 0s. Right now no exception is raised when that happens. For values
smaller than 8, no address is sent. Also no exception then.
Tested with a VL6180 sensor, which has 16-bit register addresses.
Due to code refactoring, this patch reduces stmhal and esp8266 builds
by about 50 bytes.
When the clock is too fast for the i2c slave, it can temporarily hold
down the scl line to signal to the master that it needs to wait. The
master should check the scl line when it is releasing it after
transmitting data, and wait for it to be released.
This change has been tested with a logic analyzer and an i2c slace
implemented on an atmega328p using its twi peripheral, clocked at 8Mhz.
Without the change, the i2c communication works up to aboy 150kHz
frequency, and above that results in the slave stuck in an unresponsive
state. With this change, communication has been tested to work up to
400kHz.