This allows the compiler to merge strings: e.g. "update",
"difference_update" and "symmetric_difference_update"
will all point to the same memory.
Shaves ~1KB off the image size, and potentially allows
bigger savings if qstr attrs are initialized in qstr_init(),
and not stored in the image.
It practically does the same as qstr_from_str and was only used in one
place, which should actually use the compile-time MP_QSTR_XXX form for
consistency; qstr_from_str is for runtime strings only.
The idea here is that there's a moderate amount of ROM used up by exception
text. Obviously we try to keep the messages short, and the code can enable
terse errors, but it still adds up. Listed below is the total string data
size for various ports:
bare-arm 2860
minimal 2876
stm32 8926 (PYBV11)
cc3200 3751
esp32 5721
This commit implements compression of these strings. It takes advantage of
the fact that these strings are all 7-bit ascii and extracts the top 128
frequently used words from the messages and stores them packed (dropping
their null-terminator), then uses (0x80 | index) inside strings to refer to
these common words. Spaces are automatically added around words, saving
more bytes. This happens transparently in the build process, mirroring the
steps that are used to generate the QSTR data. The MP_COMPRESSED_ROM_TEXT
macro wraps any literal string that should compressed, and it's
automatically decompressed in mp_decompress_rom_string.
There are many schemes that could be used for the compression, and some are
included in py/makecompresseddata.py for reference (space, Huffman, ngram,
common word). Results showed that the common-word compression gets better
results. This is before counting the increased cost of the Huffman
decoder. This might be slightly counter-intuitive, but this data is
extremely repetitive at a word-level, and the byte-level entropy coder
can't quite exploit that as efficiently. Ideally one would combine both
approaches, but for now the common-word approach is the one that is used.
For additional comparison, the size of the raw data compressed with gzip
and zlib is calculated, as a sort of proxy for a lower entropy bound. With
this scheme we come within 15% on stm32, and 30% on bare-arm (i.e. we use
x% more bytes than the data compressed with gzip -- not counting the code
overhead of a decoder, and how this would be hypothetically implemented).
The feature is disabled by default and can be enabled by setting
MICROPY_ROM_TEXT_COMPRESSION at the Makefile-level.
The technique of using alloca is how dotted import names are composed in
mp_import_from and mp_builtin___import__, so use the same technique in the
compiler. This puts less pressure on the heap (only the stack is used if
the qstr already exists, and if it doesn't exist then the standard qstr
block memory is used for the new qstr rather than a separate chunk of the
heap) and reduces overall code size.
The code conventions suggest using header guards, but do not define how
those should look like and instead point to existing files. However, not
all existing files follow the same scheme, sometimes omitting header guards
altogether, sometimes using non-standard names, making it easy to
accidentally pick a "wrong" example.
This commit ensures that all header files of the MicroPython project (that
were not simply copied from somewhere else) follow the same pattern, that
was already present in the majority of files, especially in the py folder.
The rules are as follows.
Naming convention:
* start with the words MICROPY_INCLUDED
* contain the full path to the file
* replace special characters with _
In addition, there are no empty lines before #ifndef, between #ifndef and
one empty line before #endif. #endif is followed by a comment containing
the name of the guard macro.
py/grammar.h cannot use header guards by design, since it has to be
included multiple times in a single C file. Several other files also do not
need header guards as they are only used internally and guaranteed to be
included only once:
* MICROPY_MPHALPORT_H
* mpconfigboard.h
* mpconfigport.h
* mpthreadport.h
* pin_defs_*.h
* qstrdefs*.h
When there're C files to be (re)compiled, they're all passed first to
preprocessor. QSTR references are extracted from preprocessed output and
split per original C file. Then all available qstr files (including those
generated previously) are catenated together. Only if the resulting content
has changed, the output file is written (causing almost global rebuild
to pick up potentially renumbered qstr's). Otherwise, it's not updated
to not cause spurious rebuilds. Related make rules are split to minimize
amount of commands executed in the interim case (when some C files were
updated, but no qstrs were changed).
The config variable MICROPY_MODULE_FROZEN is now made of two separate
parts: MICROPY_MODULE_FROZEN_STR and MICROPY_MODULE_FROZEN_MPY. This
allows to have none, either or both of frozen strings and frozen mpy
files (aka frozen bytecode).
For builds where mp_uint_t is larger than size_t, it doesn't make
sense to use such a wide type for qstrs. There can only be as many
qstrs as there is address space on the machine, so size_t is the correct
type to use.
Saves about 3000 bytes of code size when building unix/ port with
MICROPY_OBJ_REPR_D.
This patch consolidates all global variables in py/ core into one place,
in a global structure. Root pointers are all located together to make
GC tracing easier and more efficient.
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
The autogenerated header files have been moved about, and an extra
include dir has been added, which means you can give a custom
BUILD=newbuilddir option to make, and everything "just works"
Also tidied up the way the different Makefiles build their include-
directory flags