These s16-s21 registers are used by gcc so need to be saved. Future
versions of gcc (beyond v9.1.0), or other compilers, may eventually need
additional registers saved/restored.
See issue #4844.
Recent versions of gcc perform optimisations which can lead to the
following code from the MP_NLR_JUMP_HEAD macro being omitted:
top->ret_val = val; \
MP_NLR_RESTORE_PYSTACK(top); \
*_top_ptr = top->prev; \
This is noticeable (at least) in the unix coverage on x86-64 built with gcc
9.1.0. This is because the nlr_jump function is marked as no-return, so
gcc deduces that the above code has no effect.
Adding MP_UNREACHABLE tells the compiler that the asm code may branch
elsewhere, and so it cannot optimise away the code.
There were several problems with the way this worked -- the read_count
approach was too complicated and I made a mistake "simplifying" it from
WaveFile. And when the right channel was returned, it was off by 1 byte,
making it into static.
Instead, directly track which is the "other" channel that has data
available, and by using the right data type make the "+ channel"
arithmetic give the right result.
This requires a double cast (int16_t*)(void*) due to an alignment warning;
the alignment is now ensured manually, but the compiler doesn't make the
necessary inference that the low address bit must be clear.
When a playing mp3 is deinitted, it's possible to reach get_buffer,
but all the internal pointers are NULL. This would lead to a hard fault.
Avoid it by returning GET_BUFFER_ERROR instead.
It's extremely dubious that we have these handles that we think
are to GC'd memory at a time when the gc pool may not be initialized.
Hopefully, they WERE valid GC memory and are undisturbed by the teardown
of the interpreter that can lead to this state.
In this case, don't try to m_free them, the memory will become free when
the GC heap is reinitialized.
Closes: #2338 (together with previous commit)