This replaces occurences of
foo_t *foo = m_new_obj(foo_t);
foo->base.type = &foo_type;
with
foo_t *foo = mp_obj_malloc(foo_t, &foo_type);
Excludes any places where base is a sub-field or when new0/memset is used.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This contains a string useful for identifying the underlying machine. This
string is kept consistent with the second part of the REPL banner via the
new config option MICROPY_BANNER_MACHINE.
This makes os.uname() more or less redundant, as all the information in
os.uname() is now available in the sys module.
Signed-off-by: Damien George <damien@micropython.org>
This commit adds the git hash and build date to sys.version. This is
allowed according to CPython docs, and is what PyPy does. The docs state:
A string containing the version number of the Python interpreter plus
additional information on the build number and compiler used.
Eg on CPython:
Python 3.10.4 (main, Mar 23 2022, 23:05:40) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.version
'3.10.4 (main, Mar 23 2022, 23:05:40) [GCC 11.2.0]'
and PyPy:
Python 2.7.12 (5.6.0+dfsg-4, Nov 20 2016, 10:43:30)
[PyPy 5.6.0 with GCC 6.2.0 20161109] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>> import sys
>>>> sys.version
'2.7.12 (5.6.0+dfsg-4, Nov 20 2016, 10:43:30)\n[PyPy 5.6.0 with GCC ...
With this commit on MicroPython we now have:
MicroPython v1.18-371-g9d08eb024 on 2022-04-28; linux [GCC 11.2.0] v...
Use Ctrl-D to exit, Ctrl-E for paste mode
>>> import sys
>>> sys.version
'3.4.0; MicroPython v1.18-371-g9d08eb024 on 2022-04-28'
Note that the start of the banner is the same as the end of sys.version.
This helps to keep code size under control because the string can be reused
by the compiler.
Signed-off-by: Damien George <damien@micropython.org>
These files that are reformatted only now fall under the list of files to
apply uncrustify/black formatting to.
Signed-off-by: Damien George <damien@micropython.org>
This follows the CPython change: https://bugs.python.org/issue21455
Socket listen backlog defaults to 2 if not given, based on most bare metal
targets not having many resources for a large backlog. On UNIX it defaults
to SOMAXCONN or 128, whichever is less.
All variants now use extmod/moduos.c as their uos module implementation.
In particular this means they all have MICROPY_VFS enabled and use VfsPosix
for their filesystem.
As part of this, the available functions in uos become more consistent with
other ports:
- coverage variant gets uos.urandom
- minimal and standard variant get: unlink, chdir, getcwd, listdir
Signed-off-by: Damien George <damien@micropython.org>
.py files are valid source files and shouldn't be ignored. This line was
from the early days when .py files in the unix directory were used for
testing.
Signed-off-by: Damien George <damien@micropython.org>
Background: .mpy files are precompiled .py files, built using mpy-cross,
that contain compiled bytecode functions (and can also contain machine
code). The benefit of using an .mpy file over a .py file is that they are
faster to import and take less memory when importing. They are also
smaller on disk.
But the real benefit of .mpy files comes when they are frozen into the
firmware. This is done by loading the .mpy file during compilation of the
firmware and turning it into a set of big C data structures (the job of
mpy-tool.py), which are then compiled and downloaded into the ROM of a
device. These C data structures can be executed in-place, ie directly from
ROM. This makes importing even faster because there is very little to do,
and also means such frozen modules take up much less RAM (because their
bytecode stays in ROM).
The downside of frozen code is that it requires recompiling and reflashing
the entire firmware. This can be a big barrier to entry, slows down
development time, and makes it harder to do OTA updates of frozen code
(because the whole firmware must be updated).
This commit attempts to solve this problem by providing a solution that
sits between loading .mpy files into RAM and freezing them into the
firmware. The .mpy file format has been reworked so that it consists of
data and bytecode which is mostly static and ready to run in-place. If
these new .mpy files are located in flash/ROM which is memory addressable,
the .mpy file can be executed (mostly) in-place.
With this approach there is still a small amount of unpacking and linking
of the .mpy file that needs to be done when it's imported, but it's still
much better than loading an .mpy from disk into RAM (although not as good
as freezing .mpy files into the firmware).
The main trick to make static .mpy files is to adjust the bytecode so any
qstrs that it references now go through a lookup table to convert from
local qstr number in the module to global qstr number in the firmware.
That means the bytecode does not need linking/rewriting of qstrs when it's
loaded. Instead only a small qstr table needs to be built (and put in RAM)
at import time. This means the bytecode itself is static/constant and can
be used directly if it's in addressable memory. Also the qstr string data
in the .mpy file, and some constant object data, can be used directly.
Note that the qstr table is global to the module (ie not per function).
In more detail, in the VM what used to be (schematically):
qst = DECODE_QSTR_VALUE;
is now (schematically):
idx = DECODE_QSTR_INDEX;
qst = qstr_table[idx];
That allows the bytecode to be fixed at compile time and not need
relinking/rewriting of the qstr values. Only qstr_table needs to be linked
when the .mpy is loaded.
Incidentally, this helps to reduce the size of bytecode because what used
to be 2-byte qstr values in the bytecode are now (mostly) 1-byte indices.
If the module uses the same qstr more than two times then the bytecode is
smaller than before.
The following changes are measured for this commit compared to the
previous (the baseline):
- average 7%-9% reduction in size of .mpy files
- frozen code size is reduced by about 5%-7%
- importing .py files uses about 5% less RAM in total
- importing .mpy files uses about 4% less RAM in total
- importing .py and .mpy files takes about the same time as before
The qstr indirection in the bytecode has only a small impact on VM
performance. For stm32 on PYBv1.0 the performance change of this commit
is:
diff of scores (higher is better)
N=100 M=100 baseline -> this-commit diff diff% (error%)
bm_chaos.py 371.07 -> 357.39 : -13.68 = -3.687% (+/-0.02%)
bm_fannkuch.py 78.72 -> 77.49 : -1.23 = -1.563% (+/-0.01%)
bm_fft.py 2591.73 -> 2539.28 : -52.45 = -2.024% (+/-0.00%)
bm_float.py 6034.93 -> 5908.30 : -126.63 = -2.098% (+/-0.01%)
bm_hexiom.py 48.96 -> 47.93 : -1.03 = -2.104% (+/-0.00%)
bm_nqueens.py 4510.63 -> 4459.94 : -50.69 = -1.124% (+/-0.00%)
bm_pidigits.py 650.28 -> 644.96 : -5.32 = -0.818% (+/-0.23%)
core_import_mpy_multi.py 564.77 -> 581.49 : +16.72 = +2.960% (+/-0.01%)
core_import_mpy_single.py 68.67 -> 67.16 : -1.51 = -2.199% (+/-0.01%)
core_qstr.py 64.16 -> 64.12 : -0.04 = -0.062% (+/-0.00%)
core_yield_from.py 362.58 -> 354.50 : -8.08 = -2.228% (+/-0.00%)
misc_aes.py 429.69 -> 405.59 : -24.10 = -5.609% (+/-0.01%)
misc_mandel.py 3485.13 -> 3416.51 : -68.62 = -1.969% (+/-0.00%)
misc_pystone.py 2496.53 -> 2405.56 : -90.97 = -3.644% (+/-0.01%)
misc_raytrace.py 381.47 -> 374.01 : -7.46 = -1.956% (+/-0.01%)
viper_call0.py 576.73 -> 572.49 : -4.24 = -0.735% (+/-0.04%)
viper_call1a.py 550.37 -> 546.21 : -4.16 = -0.756% (+/-0.09%)
viper_call1b.py 438.23 -> 435.68 : -2.55 = -0.582% (+/-0.06%)
viper_call1c.py 442.84 -> 440.04 : -2.80 = -0.632% (+/-0.08%)
viper_call2a.py 536.31 -> 532.35 : -3.96 = -0.738% (+/-0.06%)
viper_call2b.py 382.34 -> 377.07 : -5.27 = -1.378% (+/-0.03%)
And for unix on x64:
diff of scores (higher is better)
N=2000 M=2000 baseline -> this-commit diff diff% (error%)
bm_chaos.py 13594.20 -> 13073.84 : -520.36 = -3.828% (+/-5.44%)
bm_fannkuch.py 60.63 -> 59.58 : -1.05 = -1.732% (+/-3.01%)
bm_fft.py 112009.15 -> 111603.32 : -405.83 = -0.362% (+/-4.03%)
bm_float.py 246202.55 -> 247923.81 : +1721.26 = +0.699% (+/-2.79%)
bm_hexiom.py 615.65 -> 617.21 : +1.56 = +0.253% (+/-1.64%)
bm_nqueens.py 215807.95 -> 215600.96 : -206.99 = -0.096% (+/-3.52%)
bm_pidigits.py 8246.74 -> 8422.82 : +176.08 = +2.135% (+/-3.64%)
misc_aes.py 16133.00 -> 16452.74 : +319.74 = +1.982% (+/-1.50%)
misc_mandel.py 128146.69 -> 130796.43 : +2649.74 = +2.068% (+/-3.18%)
misc_pystone.py 83811.49 -> 83124.85 : -686.64 = -0.819% (+/-1.03%)
misc_raytrace.py 21688.02 -> 21385.10 : -302.92 = -1.397% (+/-3.20%)
The code size change is (firmware with a lot of frozen code benefits the
most):
bare-arm: +396 +0.697%
minimal x86: +1595 +0.979% [incl +32(data)]
unix x64: +2408 +0.470% [incl +800(data)]
unix nanbox: +1396 +0.309% [incl -96(data)]
stm32: -1256 -0.318% PYBV10
cc3200: +288 +0.157%
esp8266: -260 -0.037% GENERIC
esp32: -216 -0.014% GENERIC[incl -1072(data)]
nrf: +116 +0.067% pca10040
rp2: -664 -0.135% PICO
samd: +844 +0.607% ADAFRUIT_ITSYBITSY_M4_EXPRESS
As part of this change the .mpy file format version is bumped to version 6.
And mpy-tool.py has been improved to provide a good visualisation of the
contents of .mpy files.
In summary: this commit changes the bytecode to use qstr indirection, and
reworks the .mpy file format to be simpler and allow .mpy files to be
executed in-place. Performance is not impacted too much. Eventually it
will be possible to store such .mpy files in a linear, read-only, memory-
mappable filesystem so they can be executed from flash/ROM. This will
essentially be able to replace frozen code for most applications.
Signed-off-by: Damien George <damien@micropython.org>
The unix port's main.c gets used by unix and windows ports, and with a
variety of compilers, so it's convenient to see which version is actually
being used immediately when starting micropython. This is similar to what
CPython does.
The inclusion of `umachine` in the list of built-in modules is now done
centrally in py/objmodule.c. Enabling MICROPY_PY_MACHINE will include this
module.
As part of this, all ports now have `umachine` as the core module name
(previously some had only `machine` as the name).
Signed-off-by: Damien George <damien@micropython.org>
In commit 86ce4426079b1b368881c22f46d80045e2f720b0 the '.frozen' entry was
added at the start of sys.path, to allow control over when frozen modules
are searched during import, and retain existing behaviour whereby frozen
was searched before the filesystem.
But Python semantics of sys.path require sys.path[0] to be the directory of
the currently executing script, or ''.
This commit moves the '.frozen' entry to second place in sys.path, so
sys.path[0] retains its correct value (described above).
Signed-off-by: Damien George <damien@micropython.org>
If MICROPY_PY_SYS_PATH_ARGV_DEFAULTS is enabled (which it is by default)
then sys.path and sys.argv will be initialised and populated with default
values. This keeps all bare-metal ports aligned.
Signed-off-by: Damien George <damien@micropython.org>
Frozen modules will be searched preferentially, but gives the user the
ability to override this behavior.
This matches the previous behavior where "" was implicitly the frozen
search path, but the frozen list was checked before the filesystem.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This feature is not enabled on any port, it's not in CPython's io module,
and functionality is better suited to the micropython-lib implementation of
pkg_resources.
For the coverage build this reduces the binary size to about 1/4 of its
size, and seems to help gcov/lcov coverage analysis so that it doesn't miss
lines.
Signed-off-by: Damien George <damien@micropython.org>
This commit removes all parts of code associated with the existing
MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE optimisation option, including the
-mcache-lookup-bc option to mpy-cross.
This feature originally provided a significant performance boost for Unix,
but wasn't able to be enabled for MCU targets (due to frozen bytecode), and
added significant extra complexity to generating and distributing .mpy
files.
The equivalent performance gain is now provided by the combination of
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE (which has
been enabled on the unix port in the previous commit).
It's hard to provide precise performance numbers, but tests have been run
on a wide variety of architectures (x86-64, ARM Cortex, Aarch64, RISC-V,
xtensa) and they all generally agree on the qualitative improvements seen
by the combination of MICROPY_OPT_LOAD_ATTR_FAST_PATH and
MICROPY_OPT_MAP_LOOKUP_CACHE.
For example, on a "quiet" Linux x64 environment (i3-5010U @ 2.10GHz) the
change from CACHE_MAP_LOOKUP_IN_BYTECODE, to LOAD_ATTR_FAST_PATH combined
with MAP_LOOKUP_CACHE is:
diff of scores (higher is better)
N=2000 M=2000 bccache -> attrmapcache diff diff% (error%)
bm_chaos.py 13742.56 -> 13905.67 : +163.11 = +1.187% (+/-3.75%)
bm_fannkuch.py 60.13 -> 61.34 : +1.21 = +2.012% (+/-2.11%)
bm_fft.py 113083.20 -> 114793.68 : +1710.48 = +1.513% (+/-1.57%)
bm_float.py 256552.80 -> 243908.29 : -12644.51 = -4.929% (+/-1.90%)
bm_hexiom.py 521.93 -> 625.41 : +103.48 = +19.826% (+/-0.40%)
bm_nqueens.py 197544.25 -> 217713.12 : +20168.87 = +10.210% (+/-3.01%)
bm_pidigits.py 8072.98 -> 8198.75 : +125.77 = +1.558% (+/-3.22%)
misc_aes.py 17283.45 -> 16480.52 : -802.93 = -4.646% (+/-0.82%)
misc_mandel.py 99083.99 -> 128939.84 : +29855.85 = +30.132% (+/-5.88%)
misc_pystone.py 83860.10 -> 82592.56 : -1267.54 = -1.511% (+/-2.27%)
misc_raytrace.py 21490.40 -> 22227.23 : +736.83 = +3.429% (+/-1.88%)
This shows that the new optimisations are at least as good as the existing
inline-bytecode-caching, and are sometimes much better (because the new
ones apply caching to a wider variety of map lookups).
The new optimisations can also benefit code generated by the native
emitter, because they apply to the runtime rather than the generated code.
The improvement for the native emitter when LOAD_ATTR_FAST_PATH and
MAP_LOOKUP_CACHE are enabled is (same Linux environment as above):
diff of scores (higher is better)
N=2000 M=2000 native -> nat-attrmapcache diff diff% (error%)
bm_chaos.py 14130.62 -> 15464.68 : +1334.06 = +9.441% (+/-7.11%)
bm_fannkuch.py 74.96 -> 76.16 : +1.20 = +1.601% (+/-1.80%)
bm_fft.py 166682.99 -> 168221.86 : +1538.87 = +0.923% (+/-4.20%)
bm_float.py 233415.23 -> 265524.90 : +32109.67 = +13.756% (+/-2.57%)
bm_hexiom.py 628.59 -> 734.17 : +105.58 = +16.796% (+/-1.39%)
bm_nqueens.py 225418.44 -> 232926.45 : +7508.01 = +3.331% (+/-3.10%)
bm_pidigits.py 6322.00 -> 6379.52 : +57.52 = +0.910% (+/-5.62%)
misc_aes.py 20670.10 -> 27223.18 : +6553.08 = +31.703% (+/-1.56%)
misc_mandel.py 138221.11 -> 152014.01 : +13792.90 = +9.979% (+/-2.46%)
misc_pystone.py 85032.14 -> 105681.44 : +20649.30 = +24.284% (+/-2.25%)
misc_raytrace.py 19800.01 -> 23350.73 : +3550.72 = +17.933% (+/-2.79%)
In summary, compared to MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE, the new
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE options:
- are simpler;
- take less code size;
- are faster (generally);
- work with code generated by the native emitter;
- can be used on embedded targets with a small and constant RAM overhead;
- allow the same .mpy bytecode to run on all targets.
See #7680 for further discussion. And see also #7653 for a discussion
about simplifying mpy-cross options.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This compiler is unable to optimise out the giant strcmp match generated
by MP_MATCH_COMPRESSED.
See github.com/micropython/micropython/pull/7659#issuecomment-899479793
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This implements (most of) the PEP-498 spec for f-strings and is based on
https://github.com/micropython/micropython/pull/4998 by @klardotsh.
It is implemented in the lexer as a syntax translation to `str.format`:
f"{a}" --> "{}".format(a)
It also supports:
f"{a=}" --> "a={}".format(a)
This is done by extracting the arguments into a temporary vstr buffer,
then after the string has been tokenized, the lexer input queue is saved
and the contents of the temporary vstr buffer are injected into the lexer
instead.
There are four main limitations:
- raw f-strings (`fr` or `rf` prefixes) are not supported and will raise
`SyntaxError: raw f-strings are not supported`.
- literal concatenation of f-strings with adjacent strings will fail
"{}" f"{a}" --> "{}{}".format(a) (str.format will incorrectly use
the braces from the non-f-string)
f"{a}" f"{a}" --> "{}".format(a) "{}".format(a) (cannot concatenate)
- PEP-498 requires the full parser to understand the interpolated
argument, however because this entirely runs in the lexer it cannot
resolve nested braces in expressions like
f"{'}'}"
- The !r, !s, and !a conversions are not supported.
Includes tests and cpydiffs.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This fixes the dev build (it needs LIB_SRC_C for Bluetooth) which was
broken by 136369d72f5b99ec23c9c9f178a590bde968e2ee.
Signed-off-by: Damien George <damien@micropython.org>
Add an optional 'lock' kwarg to callback that locks GC and scheduler. This
allows the callback to be invoked asynchronously in 'interrupt context',
for example as a signal handler.
Also add the 'cfun' member function to callback, that allows retrieving the
C callback function address. This is needed when the callback should be
set to a struct field.
See related #7373.
Signed-off-by: Amir Gonnen <amirgonnen@gmail.com>
It reschedules the BT HCI poll soft timer so that it is called exactly when
the next timer expires.
Signed-off-by: Damien George <damien@micropython.org>
This introduces a new macro to get the main thread and uses it to ensure
that asynchronous exceptions such as KeyboardInterrupt (CTRL+C) are only
scheduled on the main thread. This is more deterministic than being
scheduled on a random thread and is more in line with CPython that only
allow signal handlers to run on the main thread.
Fixes issue #7026.
Signed-off-by: David Lechner <david@pybricks.com>
This moves mp_pending_exception from mp_state_vm_t to mp_state_thread_t.
This allows exceptions to be scheduled on a specific thread.
Signed-off-by: David Lechner <david@pybricks.com>
This fixes error: cast to smaller integer type 'int' from 'pthread_t'.
pthread_t is defined as long, not as int.
Signed-off-by: Pavol Rusnak <pavol@rusnak.io>
This commit fixes the following problems converting to/from Python integers
and ffi types:
- integers of 8 and 16 bits not working on big endian
- integers of 64 bits not working on 32 bits architectures
- unsigned returns were converted to signed Python integers
Fixes issue #7269.
This fixes a bug where double arguments on a 32-bit architecture would not
be passed correctly because they only had 4 bytes of storage (not 8). It
also fixes a compiler warning/error in return_ffi_value on certian
architectures: array subscript 'double[0]' is partly outside array bounds
of 'ffi_arg[1]' {aka 'long unsigned int[1]'}.
Fixes issue #7064.
Signed-off-by: Damien George <damien@micropython.org>
Doing "import <tab>" will now complete/list built-in modules.
Originally at adafruit#4548 and adafruit#4608
Signed-off-by: Artyom Skrobov <tyomitch@gmail.com>
This fixes `error: variable 'subpkg_tried' might be clobbered by 'longjmp'
or 'vfork' [-Werror=clobbered]` when compiling on ppc64le and aarch64 (and
possibly other architectures/toolchains).
Per CPython everything which comes after the command, module or file
argument is not an option for the interpreter itself. Hence the processing
of options should stop when encountering those, and the remainder be passed
as sys.argv. Note the latter was already the case for a module or file but
not for a command.
This fixes issues like 'micropython myfile.py -h' showing the help and
exiting instead of passing '-h' as sys.argv[1], likewise for
'-X <something>' being treated as a special option no matter where it
occurs on the command line.
It's a bit of a pitfall with user C modules that including them in the
build does not automatically enable them. This commit changes the docs and
examples for user C modules to encourage writers of user C modules to
enable them unconditionally. This makes things simpler and covers most use
cases.
See discussion in issue #6960, and also #7086.
Signed-off-by: Damien George <damien@micropython.org>