Weirdly we have to stop the AP too (which we never started),
or cyw43_tcpip_link_status still reports that STA is connected.
As long as AP mode isn't implemented, this doesn't matter and
we can just do it.
Foamyguy discovered that trying to send >2920 bytes at once consistently
failed. I further discovered that sometimes trying to send >1460 bytes
would fail too. By "fail", I mean that it would take a very long time
(around 200 * 50ms) before erroneously reporting that all bytes were
written.
In my testing, this change causes larger writes to successfully
send either 2920 or 1460 bytes (possibly after doing some 50ms waits
for a previous packet to clear).
The documentation of socket.send always stated that it COULD send fewer
bytes than requested, but adafruit_httpserver assumed that the number
of requested bytes were always sent, so after this change alone,
adafruit_httpserver will still not work properly.
Closes: #7077 (albeit fixes are needed in adafruit_httpserver too)
This reduces power consumption during true deep sleep.
In my measurements with ppk2 and a program that _irrevocably_ entered
deep sleep (no time alarm or pin alarm), power usage as measured on a
ppk2 decreased from ~10mA to ~1mA.
Another reduction of -48 bytes can be had if the fine calculation
step is skipped. The worst difference compared to the old reference
code with my calibration values in the 0° to 60° was 2°C,
and the difference at 25°C is 1°C.
The final size decrease for non-full builds like Trinket M0 is 268
bytes.
Perform most arithmetic with scaled integer values.
For my calibration values
```
const uint32_t NVMCTRL_TEMP_LOG[]={0xfc05511e, 0xcc7ac0f7};
```
the maximum difference between the old and new calculation is 0.50°C.
The difference is smallest (0.13°) at 25.87°C in the old scale.
This reduces mcu_processor_get_temperature from 568 bytes to 348 bytes
(-220 bytes)
The prefixed versions raise Python exceptions, the un-prefixed return
negative error values. We don't want to raise an exception from here,
it leaves the SSL stack in an undefined state.
Adds support for the BananaPi BPI-PicoW-S3 Boards.
Based on esp32s3 chip.
With one WS2812 LED, one monochrome LED, one ceramic antenna.
Support double-reset to tinyUF2.
## Testing self-signed certificates and `load_verify_locations`
Obtain the badssl "self-signed" certificate in the correct form:
```sh
openssl s_client -servername self-signed.badssl.com -connect untrusted-root.badssl.com:443 < /dev/null | openssl x509 > self-signed.pem
```
Copy it and the script to CIRCUITPY:
```python
import os
import wifi
import socketpool
import ssl
import adafruit_requests
TEXT_URL = "https://self-signed.badssl.com/"
if not wifi.radio.ipv4_address:
wifi.radio.connect(os.getenv('WIFI_SSID'), os.getenv('WIFI_PASSWORD'))
pool = socketpool.SocketPool(wifi.radio)
context = ssl.create_default_context()
requests = adafruit_requests.Session(pool, context)
print(f"Fetching from {TEXT_URL} without certificate (should fail)")
try:
response = requests.get(TEXT_URL)
except Exception as e:
print(f"Failed: {e}")
else:
print(f"{response.status_code=}, should have failed with exception")
print("Loading server certificate")
with open("/self-signed.pem", "rb") as certfile:
context.load_verify_locations(cadata=certfile.read())
requests = adafruit_requests.Session(pool, context)
print(f"Fetching from {TEXT_URL} with certificate (should succeed)")
try:
response = requests.get(TEXT_URL)
except Exception as e:
print(f"Unexpected exception: {e}")
else:
print(f"{response.status_code=}, should be 200 OK")
```