38 Commits

Author SHA1 Message Date
David Lechner
1e99d29f36 py/runtime: Allow multiple **args in a function call.
This is a partial implementation of PEP 448 to allow multiple ** unpackings
when calling a function or method.

The compiler is modified to encode the argument as a None: obj key-value
pair (similar to how regular keyword arguments are encoded as str: obj
pairs).  The extra object that was pushed on the stack to hold a single **
unpacking object is no longer used and is removed.

The runtime is modified to decode this new format.

Signed-off-by: David Lechner <david@pybricks.com>
2022-03-31 16:54:00 +11:00
Damien George
538c3c0a55 py: Change jump opcodes to emit 1-byte jump offset when possible.
This commit introduces changes:

- All jump opcodes are changed to have variable length arguments, of either
  1 or 2 bytes (previously they were fixed at 2 bytes).  In most cases only
  1 byte is needed to encode the short jump offset, saving bytecode size.

- The bytecode emitter now selects 1 byte jump arguments when the jump
  offset is guaranteed to fit in 1 byte.  This is achieved by checking if
  the code size changed during the last pass and, if it did (if it shrank),
  then requesting that the compiler make another pass to get the correct
  offsets of the now-smaller code.  This can continue multiple times until
  the code stabilises.  The code can only ever shrink so this iteration is
  guaranteed to complete.  In most cases no extra passes are needed, the
  original 4 passes are enough to get it right by the 4th pass (because the
  2nd pass computes roughly the correct labels and the 3rd pass computes
  the correct size for the jump argument).

This change to the jump opcode encoding reduces .mpy files and RAM usage
(when bytecode is in RAM) by about 2% on average.

The performance of the VM is not impacted, at least within measurment of
the performance benchmark suite.

Code size is reduced for builds that include a decent amount of frozen
bytecode.  ARM Cortex-M builds without any frozen code increase by about
350 bytes.

Signed-off-by: Damien George <damien@micropython.org>
2022-03-28 15:41:38 +11:00
Damien George
f2040bfc7e py: Rework bytecode and .mpy file format to be mostly static data.
Background: .mpy files are precompiled .py files, built using mpy-cross,
that contain compiled bytecode functions (and can also contain machine
code). The benefit of using an .mpy file over a .py file is that they are
faster to import and take less memory when importing.  They are also
smaller on disk.

But the real benefit of .mpy files comes when they are frozen into the
firmware.  This is done by loading the .mpy file during compilation of the
firmware and turning it into a set of big C data structures (the job of
mpy-tool.py), which are then compiled and downloaded into the ROM of a
device.  These C data structures can be executed in-place, ie directly from
ROM.  This makes importing even faster because there is very little to do,
and also means such frozen modules take up much less RAM (because their
bytecode stays in ROM).

The downside of frozen code is that it requires recompiling and reflashing
the entire firmware.  This can be a big barrier to entry, slows down
development time, and makes it harder to do OTA updates of frozen code
(because the whole firmware must be updated).

This commit attempts to solve this problem by providing a solution that
sits between loading .mpy files into RAM and freezing them into the
firmware.  The .mpy file format has been reworked so that it consists of
data and bytecode which is mostly static and ready to run in-place.  If
these new .mpy files are located in flash/ROM which is memory addressable,
the .mpy file can be executed (mostly) in-place.

With this approach there is still a small amount of unpacking and linking
of the .mpy file that needs to be done when it's imported, but it's still
much better than loading an .mpy from disk into RAM (although not as good
as freezing .mpy files into the firmware).

The main trick to make static .mpy files is to adjust the bytecode so any
qstrs that it references now go through a lookup table to convert from
local qstr number in the module to global qstr number in the firmware.
That means the bytecode does not need linking/rewriting of qstrs when it's
loaded.  Instead only a small qstr table needs to be built (and put in RAM)
at import time.  This means the bytecode itself is static/constant and can
be used directly if it's in addressable memory.  Also the qstr string data
in the .mpy file, and some constant object data, can be used directly.
Note that the qstr table is global to the module (ie not per function).

In more detail, in the VM what used to be (schematically):

    qst = DECODE_QSTR_VALUE;

is now (schematically):

    idx = DECODE_QSTR_INDEX;
    qst = qstr_table[idx];

That allows the bytecode to be fixed at compile time and not need
relinking/rewriting of the qstr values.  Only qstr_table needs to be linked
when the .mpy is loaded.

Incidentally, this helps to reduce the size of bytecode because what used
to be 2-byte qstr values in the bytecode are now (mostly) 1-byte indices.
If the module uses the same qstr more than two times then the bytecode is
smaller than before.

The following changes are measured for this commit compared to the
previous (the baseline):
- average 7%-9% reduction in size of .mpy files
- frozen code size is reduced by about 5%-7%
- importing .py files uses about 5% less RAM in total
- importing .mpy files uses about 4% less RAM in total
- importing .py and .mpy files takes about the same time as before

The qstr indirection in the bytecode has only a small impact on VM
performance.  For stm32 on PYBv1.0 the performance change of this commit
is:

diff of scores (higher is better)
N=100 M=100             baseline -> this-commit  diff      diff% (error%)
bm_chaos.py               371.07 ->  357.39 :  -13.68 =  -3.687% (+/-0.02%)
bm_fannkuch.py             78.72 ->   77.49 :   -1.23 =  -1.563% (+/-0.01%)
bm_fft.py                2591.73 -> 2539.28 :  -52.45 =  -2.024% (+/-0.00%)
bm_float.py              6034.93 -> 5908.30 : -126.63 =  -2.098% (+/-0.01%)
bm_hexiom.py               48.96 ->   47.93 :   -1.03 =  -2.104% (+/-0.00%)
bm_nqueens.py            4510.63 -> 4459.94 :  -50.69 =  -1.124% (+/-0.00%)
bm_pidigits.py            650.28 ->  644.96 :   -5.32 =  -0.818% (+/-0.23%)
core_import_mpy_multi.py  564.77 ->  581.49 :  +16.72 =  +2.960% (+/-0.01%)
core_import_mpy_single.py  68.67 ->   67.16 :   -1.51 =  -2.199% (+/-0.01%)
core_qstr.py               64.16 ->   64.12 :   -0.04 =  -0.062% (+/-0.00%)
core_yield_from.py        362.58 ->  354.50 :   -8.08 =  -2.228% (+/-0.00%)
misc_aes.py               429.69 ->  405.59 :  -24.10 =  -5.609% (+/-0.01%)
misc_mandel.py           3485.13 -> 3416.51 :  -68.62 =  -1.969% (+/-0.00%)
misc_pystone.py          2496.53 -> 2405.56 :  -90.97 =  -3.644% (+/-0.01%)
misc_raytrace.py          381.47 ->  374.01 :   -7.46 =  -1.956% (+/-0.01%)
viper_call0.py            576.73 ->  572.49 :   -4.24 =  -0.735% (+/-0.04%)
viper_call1a.py           550.37 ->  546.21 :   -4.16 =  -0.756% (+/-0.09%)
viper_call1b.py           438.23 ->  435.68 :   -2.55 =  -0.582% (+/-0.06%)
viper_call1c.py           442.84 ->  440.04 :   -2.80 =  -0.632% (+/-0.08%)
viper_call2a.py           536.31 ->  532.35 :   -3.96 =  -0.738% (+/-0.06%)
viper_call2b.py           382.34 ->  377.07 :   -5.27 =  -1.378% (+/-0.03%)

And for unix on x64:

diff of scores (higher is better)
N=2000 M=2000        baseline -> this-commit     diff      diff% (error%)
bm_chaos.py          13594.20 ->  13073.84 :  -520.36 =  -3.828% (+/-5.44%)
bm_fannkuch.py          60.63 ->     59.58 :    -1.05 =  -1.732% (+/-3.01%)
bm_fft.py           112009.15 -> 111603.32 :  -405.83 =  -0.362% (+/-4.03%)
bm_float.py         246202.55 -> 247923.81 : +1721.26 =  +0.699% (+/-2.79%)
bm_hexiom.py           615.65 ->    617.21 :    +1.56 =  +0.253% (+/-1.64%)
bm_nqueens.py       215807.95 -> 215600.96 :  -206.99 =  -0.096% (+/-3.52%)
bm_pidigits.py        8246.74 ->   8422.82 :  +176.08 =  +2.135% (+/-3.64%)
misc_aes.py          16133.00 ->  16452.74 :  +319.74 =  +1.982% (+/-1.50%)
misc_mandel.py      128146.69 -> 130796.43 : +2649.74 =  +2.068% (+/-3.18%)
misc_pystone.py      83811.49 ->  83124.85 :  -686.64 =  -0.819% (+/-1.03%)
misc_raytrace.py     21688.02 ->  21385.10 :  -302.92 =  -1.397% (+/-3.20%)

The code size change is (firmware with a lot of frozen code benefits the
most):

       bare-arm:  +396 +0.697%
    minimal x86: +1595 +0.979% [incl +32(data)]
       unix x64: +2408 +0.470% [incl +800(data)]
    unix nanbox: +1396 +0.309% [incl -96(data)]
          stm32: -1256 -0.318% PYBV10
         cc3200:  +288 +0.157%
        esp8266:  -260 -0.037% GENERIC
          esp32:  -216 -0.014% GENERIC[incl -1072(data)]
            nrf:  +116 +0.067% pca10040
            rp2:  -664 -0.135% PICO
           samd:  +844 +0.607% ADAFRUIT_ITSYBITSY_M4_EXPRESS

As part of this change the .mpy file format version is bumped to version 6.
And mpy-tool.py has been improved to provide a good visualisation of the
contents of .mpy files.

In summary: this commit changes the bytecode to use qstr indirection, and
reworks the .mpy file format to be simpler and allow .mpy files to be
executed in-place.  Performance is not impacted too much.  Eventually it
will be possible to store such .mpy files in a linear, read-only, memory-
mappable filesystem so they can be executed from flash/ROM.  This will
essentially be able to replace frozen code for most applications.

Signed-off-by: Damien George <damien@micropython.org>
2022-02-24 18:08:43 +11:00
Damien George
78ab2eeda3 py/showbc: Print unary-op string when dumping bytecode.
Signed-off-by: Damien George <damien@micropython.org>
2021-11-19 17:05:40 +11:00
Jim Mussared
b326edf68c all: Remove MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE.
This commit removes all parts of code associated with the existing
MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE optimisation option, including the
-mcache-lookup-bc option to mpy-cross.

This feature originally provided a significant performance boost for Unix,
but wasn't able to be enabled for MCU targets (due to frozen bytecode), and
added significant extra complexity to generating and distributing .mpy
files.

The equivalent performance gain is now provided by the combination of
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE (which has
been enabled on the unix port in the previous commit).

It's hard to provide precise performance numbers, but tests have been run
on a wide variety of architectures (x86-64, ARM Cortex, Aarch64, RISC-V,
xtensa) and they all generally agree on the qualitative improvements seen
by the combination of MICROPY_OPT_LOAD_ATTR_FAST_PATH and
MICROPY_OPT_MAP_LOOKUP_CACHE.

For example, on a "quiet" Linux x64 environment (i3-5010U @ 2.10GHz) the
change from CACHE_MAP_LOOKUP_IN_BYTECODE, to LOAD_ATTR_FAST_PATH combined
with MAP_LOOKUP_CACHE is:

diff of scores (higher is better)
N=2000 M=2000       bccache -> attrmapcache      diff      diff% (error%)
bm_chaos.py        13742.56 ->   13905.67 :   +163.11 =  +1.187% (+/-3.75%)
bm_fannkuch.py        60.13 ->      61.34 :     +1.21 =  +2.012% (+/-2.11%)
bm_fft.py         113083.20 ->  114793.68 :  +1710.48 =  +1.513% (+/-1.57%)
bm_float.py       256552.80 ->  243908.29 : -12644.51 =  -4.929% (+/-1.90%)
bm_hexiom.py         521.93 ->     625.41 :   +103.48 = +19.826% (+/-0.40%)
bm_nqueens.py     197544.25 ->  217713.12 : +20168.87 = +10.210% (+/-3.01%)
bm_pidigits.py      8072.98 ->    8198.75 :   +125.77 =  +1.558% (+/-3.22%)
misc_aes.py        17283.45 ->   16480.52 :   -802.93 =  -4.646% (+/-0.82%)
misc_mandel.py     99083.99 ->  128939.84 : +29855.85 = +30.132% (+/-5.88%)
misc_pystone.py    83860.10 ->   82592.56 :  -1267.54 =  -1.511% (+/-2.27%)
misc_raytrace.py   21490.40 ->   22227.23 :   +736.83 =  +3.429% (+/-1.88%)

This shows that the new optimisations are at least as good as the existing
inline-bytecode-caching, and are sometimes much better (because the new
ones apply caching to a wider variety of map lookups).

The new optimisations can also benefit code generated by the native
emitter, because they apply to the runtime rather than the generated code.
The improvement for the native emitter when LOAD_ATTR_FAST_PATH and
MAP_LOOKUP_CACHE are enabled is (same Linux environment as above):

diff of scores (higher is better)
N=2000 M=2000        native -> nat-attrmapcache  diff      diff% (error%)
bm_chaos.py        14130.62 ->   15464.68 :  +1334.06 =  +9.441% (+/-7.11%)
bm_fannkuch.py        74.96 ->      76.16 :     +1.20 =  +1.601% (+/-1.80%)
bm_fft.py         166682.99 ->  168221.86 :  +1538.87 =  +0.923% (+/-4.20%)
bm_float.py       233415.23 ->  265524.90 : +32109.67 = +13.756% (+/-2.57%)
bm_hexiom.py         628.59 ->     734.17 :   +105.58 = +16.796% (+/-1.39%)
bm_nqueens.py     225418.44 ->  232926.45 :  +7508.01 =  +3.331% (+/-3.10%)
bm_pidigits.py      6322.00 ->    6379.52 :    +57.52 =  +0.910% (+/-5.62%)
misc_aes.py        20670.10 ->   27223.18 :  +6553.08 = +31.703% (+/-1.56%)
misc_mandel.py    138221.11 ->  152014.01 : +13792.90 =  +9.979% (+/-2.46%)
misc_pystone.py    85032.14 ->  105681.44 : +20649.30 = +24.284% (+/-2.25%)
misc_raytrace.py   19800.01 ->   23350.73 :  +3550.72 = +17.933% (+/-2.79%)

In summary, compared to MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE, the new
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE options:
- are simpler;
- take less code size;
- are faster (generally);
- work with code generated by the native emitter;
- can be used on embedded targets with a small and constant RAM overhead;
- allow the same .mpy bytecode to run on all targets.

See #7680 for further discussion.  And see also #7653 for a discussion
about simplifying mpy-cross options.

Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
2021-09-16 16:04:03 +10:00
David Lechner
3dc324d3f1 tests: Format all Python code with black, except tests in basics subdir.
This adds the Python files in the tests/ directory to be formatted with
./tools/codeformat.py.  The basics/ subdirectory is excluded for now so we
aren't changing too much at once.

In a few places `# fmt: off`/`# fmt: on` was used where the code had
special formatting for readability or where the test was actually testing
the specific formatting.
2020-03-30 13:21:58 +11:00
Petr Viktorin
25a9bccdee py/compile: Disallow 'import *' outside module level.
This check follows CPython's behaviour, because 'import *' always populates
the globals with the imported names, not locals.

Since it's safe to do this (doesn't lead to a crash or undefined behaviour)
the check is only enabled for MICROPY_CPYTHON_COMPAT.

Fixes issue #5121.
2019-10-04 16:46:47 +10:00
Damien George
c8c0fd4ca3 py: Rework and compress second part of bytecode prelude.
This patch compresses the second part of the bytecode prelude which
contains the source file name, function name, source-line-number mapping
and cell closure information.  This part of the prelude now begins with a
single varible length unsigned integer which encodes 2 numbers, being the
byte-size of the following 2 sections in the header: the "source info
section" and the "closure section".  After decoding this variable unsigned
integer it's possible to skip over one or both of these sections very
easily.

This scheme saves about 2 bytes for most functions compared to the original
format: one in the case that there are no closure cells, and one because
padding was eliminated.
2019-10-01 12:26:22 +10:00
Damien George
02db91a7a3 py: Split RAISE_VARARGS opcode into 3 separate ones.
From the beginning of this project the RAISE_VARARGS opcode was named and
implemented following CPython, where it has an argument (to the opcode)
counting how many args the raise takes:

    raise # 0 args (re-raise previous exception)
    raise exc # 1 arg
    raise exc from exc2 # 2 args (chained raise)

In the bytecode this operation therefore takes 2 bytes, one for
RAISE_VARARGS and one for the number of args.

This patch splits this opcode into 3, where each is now a single byte.
This reduces bytecode size by 1 byte for each use of raise.  Every byte
counts!  It also has the benefit of reducing code size (on all ports except
nanbox).
2019-09-26 15:39:50 +10:00
Damien George
67fdfebe64 tests: Update tests for changes to opcode ordering. 2019-09-26 15:27:11 +10:00
Damien George
2069c563f9 py: Add support for matmul operator @ as per PEP 465.
To make progress towards MicroPython supporting Python 3.5, adding the
matmul operator is important because it's a really "low level" part of the
language, being a new token and modifications to the grammar.

It doesn't make sense to make it configurable because 1) it would make the
grammar and lexer complicated/messy; 2) no other operators are
configurable; 3) it's not a feature that can be "dynamically plugged in"
via an import.

And matmul can be useful as a general purpose user-defined operator, it
doesn't have to be just for numpy use.

Based on work done by Jim Mussared.
2019-09-26 15:12:39 +10:00
Milan Rossa
498e35219e tests: Add tests for sys.settrace feature. 2019-08-30 16:48:22 +10:00
Milan Rossa
ae6fe8b43c py/compile: Improve the line numbering precision for comprehensions.
The line number for comprehensions is now always reported as the correct
global location in the script, instead of just "line 1".
2019-08-19 23:50:30 +10:00
Damien George
5a2599d962 py: Replace POP_BLOCK and POP_EXCEPT opcodes with POP_EXCEPT_JUMP.
POP_BLOCK and POP_EXCEPT are now the same, and are always followed by a
JUMP.  So this optimisation reduces code size, and RAM usage of bytecode by
two bytes for each try-except handler.
2019-03-05 16:09:58 +11:00
Damien George
e1fb03f3e2 py: Fix VM crash with unwinding jump out of a finally block.
This patch fixes a bug in the VM when breaking within a try-finally.  The
bug has to do with executing a break within the finally block of a
try-finally statement.  For example:

    def f():
        for x in (1,):
            print('a', x)
            try:
                raise Exception
            finally:
                print(1)
                break
            print('b', x)
    f()

Currently in uPy the above code will print:

    a 1
    1
    1
    segmentation fault (core dumped)  micropython

Not only is there a seg fault, but the "1" in the finally block is printed
twice.  This is because when the VM executes a finally block it doesn't
really know if that block was executed due to a fall-through of the try (no
exception raised), or because an exception is active.  In particular, for
nested finallys the VM has no idea which of the nested ones have active
exceptions and which are just fall-throughs.  So when a break (or continue)
is executed it tries to unwind all of the finallys, when in fact only some
may be active.

It's questionable whether break (or return or continue) should be allowed
within a finally block, because they implicitly swallow any active
exception, but nevertheless it's allowed by CPython (although almost never
used in the standard library).  And uPy should at least not crash in such a
case.

The solution here relies on the fact that exception and finally handlers
always appear in the bytecode after the try body.

Note: there was a similar bug with a return in a finally block, but that
was previously fixed in b735208403a54774f9fd3d966f7c1a194c41870f
2019-03-05 16:05:05 +11:00
Damien George
0864a6957f py: Clean up unary and binary enum list to keep groups together.
2 non-bytecode binary ops (NOT_IN and IN_NOT) are moved out of the
bytecode group, so this change will change the bytecode format.
2017-10-05 10:49:44 +11:00
Paul Sokolovsky
9d836fedbd py: Clarify which mp_unary_op_t's may appear in the bytecode.
Not all can, so we don't need to reserve bytecodes for them, and can
use free slots for something else later.
2017-09-25 16:35:19 -07:00
Paul Sokolovsky
b8ee7ab5b9 py/runtime0.h: Put inplace arith ops in front of normal operations.
This is to allow to place reverse ops immediately after normal ops, so
they can be tested as one range (which is optimization for reverse ops
introduction in the next patch).
2017-09-08 00:10:10 +03:00
Paul Sokolovsky
50b9329eba py/runtime0.h: Move MP_BINARY_OP_DIVMOD to the end of mp_binary_op_t.
It starts a dichotomy of mp_binary_op_t values which can't appear in the
bytecode. Another reason to move it is to VALUES of OP_* and OP_INPLACE_*
nicely adjacent. This also will be needed for OP_REVERSE_*, to be soon
introduced.
2017-09-07 11:26:42 +03:00
Paul Sokolovsky
d4d1c45a55 py/runtime0.h: Move relational ops to the beginning of mp_binary_op_t.
This is to allow to encode arithmetic operations more efficiently, in
preparation to introduction of __rOP__ method support.
2017-09-07 10:55:43 +03:00
Damien George
30badd1ce1 tests: Add tests for calling super and loading a method directly. 2017-04-22 23:39:38 +10:00
Damien George
86b3db9cd0 tests/cmdline/cmd_showbc: Update to work with recent changes. 2017-02-16 18:38:07 +11:00
Damien George
861b001783 tests/cmdline: Update tests to pass with latest changes to bytecode. 2017-02-16 18:38:07 +11:00
Damien George
f4df3aaa72 py: Allow bytecode/native to put iter_buf on stack for simple for loops.
So that the "for x in it: ..." statement can now work without using the
heap (so long as the iterator argument fits in an iter_buf structure).
2017-02-16 18:38:06 +11:00
Damien George
453c2e8f55 tests/cmdline: Improve coverage test for printing bytecode. 2016-10-17 11:23:37 +11:00
stijn
7f19b1c3eb tests: Fix expected output of verbose cmdline test
The output might contain more than one line ending in 5b so properly skip
everything until the next known point.
This fixes test failures in appveyor debug builds.
2016-10-05 12:58:50 +02:00
Damien George
f65e4f0b8f tests/cmdline/cmd_showbc: Fix test now that 1 value is stored on stack.
This corresponds to the change in the way exception values are stored on
the Python value stack.
2016-09-27 13:22:06 +10:00
Damien George
bb954d80a4 tests: Get cmdline verbose tests running again.
The showbc function now no longer uses the system printf so works
correctly.
2016-09-20 11:33:19 +10:00
Damien George
59fba2d6ea py: Remove mp_load_const_bytes and instead load precreated bytes object.
Previous to this patch each time a bytes object was referenced a new
instance (with the same data) was created.  With this patch a single
bytes object is created in the compiler and is loaded directly at execute
time as a true constant (similar to loading bignum and float objects).
This saves on allocating RAM and means that bytes objects can now be
used when the memory manager is locked (eg in interrupts).

The MP_BC_LOAD_CONST_BYTES bytecode was removed as part of this.

Generated bytecode is slightly larger due to storing a pointer to the
bytes object instead of the qstr identifier.

Code size is reduced by about 60 bytes on Thumb2 architectures.
2015-06-25 14:42:13 +00:00
Damien George
c5029bcbf3 py: Add MP_BINARY_OP_DIVMOD to simplify and consolidate divmod builtin. 2015-06-13 23:36:30 +01:00
Damien George
c2a4e4effc py: Convert hash API to use MP_UNARY_OP_HASH instead of ad-hoc function.
Hashing is now done using mp_unary_op function with MP_UNARY_OP_HASH as
the operator argument.  Hashing for int, str and bytes still go via
fast-path in mp_unary_op since they are the most common objects which
need to be hashed.

This lead to quite a bit of code cleanup, and should be more efficient
if anything.  It saves 176 bytes code space on Thumb2, and 360 bytes on
x86.

The only loss is that the error message "unhashable type" is now the
more generic "unsupported type for __hash__".
2015-05-12 22:46:02 +01:00
Damien George
9a42eb541e py: Fix naming of function arguments when function is a closure.
Addresses issue #1226.
2015-05-06 13:55:33 +01:00
Damien George
367d4d1098 tests: Fix cmd_showbc now that LOAD_CONST_ELLIPSIS bytecode is gone. 2015-05-05 23:58:52 +01:00
Damien George
8c1d23a0e2 py: Modify bytecode "with" behaviour so it doesn't use any heap.
Before this patch a "with" block needed to create a bound method object
on the heap for the __exit__ call.  Now it doesn't because we use
load_method instead of load_attr, and save the method+self on the stack.
2015-04-24 01:52:28 +01:00
Damien George
c9aa1883ed py: Simplify bytecode prelude when encoding closed over variables. 2015-04-07 00:08:17 +01:00
Damien George
1004535237 tests: Make cmdline tests more stable by using regex for matching. 2015-03-20 17:25:25 +00:00
Damien George
0683c1ceef tests: Don't try to verify amount of memory used in cmd_showbc test. 2015-03-14 17:38:41 +00:00
Damien George
703c009681 tests: Add cmdline test to test showbc code. 2015-03-14 14:06:20 +00:00