complete pin mapping for Feather pins
stubbed out files needed for complilation. still to be modified
0 out all CPY modules in mpconfigboard.mk until we get the build running
add csv for pin generation for STM32L4R5
add F4R5 references in peripherals files
refactored out board files BECAUSE I AM AN IDIOT; add L4 series system clocks file from CubeMX
took a guess at the number of USB endpoint pairs to get the build done
guess was close, but wrong. It is 8
clean up peripheral DEFs
Fixes build error:
```
In file included from ../../py/mpstate.h:33,
from ../../py/mpstate.c:27:
../../py/misc.h: In function 'vstr_str':
../../py/misc.h:196:1: sorry, unimplemented: Thumb-1 hard-float VFP ABI
static inline char *vstr_str(vstr_t *vstr) {
^~~~~~
```
Sleuthing steps:
* verify that the feather_stm32f4_express board builds correctly
* put a `#error` at the bottom of the `mpstate.c` file.
* build for the feather and swan boards, with V=2 to capture the build command for that file.
* use a differencing tool to inspect the differences between the two invocations
* inspecting the differences, I saw a missing `-mcpu=cortex-m4` I tested by adding that to the Swan build command. The file built fine (stopping at the hard error, but no other warnings.)
A grep through the sources revealed where this flag was being set for the stm ports.
With this commit, the build gets further, but does not complete. The next exciting episode in this unfolding coding saga is just a commit away!
working build with minimal set of modules for the Blues Swan r5
chore:change header copyright name to Blues Wireless Contributors
USB operational. Fixed up clocks to be hardwired for LSE no HSE case. (Trying to combine HSE in there made the code much more complex, and I don't have a board to test it out on.)
USART working
adds support for `ENABLE_3V3` and `DISCHARGE_3V3` pins. I am surprised that pin definitions are quite low-level and don't include default direction and state, so the code currently has to initialize `ENABLE_3V3` pin as output. The LED takes over a second to discharge, so I wonder if the board startup code is not having the desired affect.
short circuit implementation of backup memory for the STM32L4
all the ports
remove company name from board name to be consistent with the Arduino board definition.
add default pins for I2C, SPI and UART, so that `board.I2C` et al. works as expected. Confirmed I2C timing.
fix board name
fix incorrect pin definition. add test to allow manual check of each output pin
analog IO
code changes for WebUSB. Doesn't appear to work, will revisit later.
ensure that `sys.platform` is available
checkin missing file
feat: make room for a larger filesystem so the sensor tutorial will fit on the device.
fix:(stm32l4r5zi.csv): merged AF0-7 and AF8-15 into single lines and removed extraneous headers mixed in with the data.
fix(parse_af_csv.py): pin index in the csv is 0 not 1, and AF index made 1 larger
chore(Swan R5): update peripherals pins from `parse_af_csv.py` output
optimize flash sector access
Also:
- Use NO_PIN, not 0xff for I2SOut (cosmetic fix only; no actual functional change)
- Add VOLTAGE_MONITOR/BATTERY, ACCELEROMETER_INTERRUPT pins for LED Glasses Driver
The boot counter is a uint8_t single-byte counter stored in the first NVM byte position (`micrcontroller.nvm[0]`). The counter increments by 1 each time the board boots, regardless if it's a hard or soft reset.
Enable the boot counter by adding `#define CIRCUITPY_BOOT_COUNTER 1` to your board's mpconfigboard.h file. Note that an error will be thrown during the build if `CIRCUITPY_INTERNAL_NVM_SIZE` is not also set within mpconfigboard.h.
The BLE workflow will be advertising and the scan's load of
identities conflicts with it. This change ensures scanning and
advertising happens exclusively.
This showed as an unknown error 3204.
Fixes https://github.com/adafruit/Adafruit_CircuitPython_BLE/issues/134
* Reduce the number of supported HID reports of IDs per descriptor.
This saves ~200 bytes in the default HID objects.
* (Not enabled) Compute QSTR attrs on init. This trades 1k RAM for
flash. Flash is the default (1).
To keep things neat and tidy, we ensure that each file has 1 and only 1
newline at the end of each file.
Signed-off-by: David Lechner <david@pybricks.com>
Fixes a crash from trying to raise an exception when trying to
deinit a RESET wdt by not raising an exception.
Fixes a crash when raise a wdt exception in the REPL when waiting
for input. We now catch and print any exceptions raised.
Fixes#5261
This enables the _stage library and adds stage and ugame modules to the
frozen modules, so that all Stage games should work.
I had to do several hacks:
* Since displayio.release_displays doesn't release the pins, I couldn't
re-initialize the display inside the ugame module. Instead I changed
the default display initialization for the board to match what Stage
expects.
* I wanted to make the MENU key works as K_Z, but when I try to use it
with the keypad module, I get "pin in use" error. So for now only the
A and B buttons are used.
A board can now define the following to fully customise the extended block
device interface provided by the storage sub-system:
- MICROPY_HW_BDEV_BLOCKSIZE_EXT
- MICROPY_HW_BDEV_READBLOCKS_EXT
- MICROPY_HW_BDEV_WRITEBLOCKS_EXT
- MICROPY_HW_BDEV_ERASEBLOCKS_EXT
Signed-off-by: Damien George <damien@micropython.org>
Add a new board type for ESP32-C3 revision 3 and up that implement the USB
serial/JTAG port on pin 18 and 19. This variant uses the USB serial for
programming and console, leaving the UART free.
- Pins 18 and 19 are correctly reserved for this variant. Also pins 14-17
are reserved for flash for any ESP32-C3 so they can't be reconfigured
anymore to crash the system.
- Added usb_serial_jtag.c and .h to implement this interface.
- Interface was tested to work correctly together with webrepl.
- Interface was tested to work correctly when sending and receiving
large files with ampy.
- Disconnecting terminal or USB will not hang the system when it's
trying to print.