Formerly, py/formatfloat would print whole numbers inaccurately with
nonzero digits beyond the decimal place. This resulted from its strategy
of successive scaling of the argument by 0.1 which cannot be exactly
represented in floating point. The change in this commit avoids scaling
until the value is smaller than 1, so all whole numbers print with zero
fractional part.
Fixes issue #4212.
Signed-off-by: Dan Ellis dan.ellis@gmail.com
On ports with more than one filesystem, the type will be wrong, for example
if using LFS but FAT enabled, then the type will be FAT. So it's not
possible to use these classes to identify a file object type.
Furthermore, constructing an io.FileIO currently crashes on FAT, and
make_new isn't supported on LFS.
And the io.TextIOWrapper class does not match CPython at all.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit simplifies mp_obj_get_complex_maybe() by first calling
mp_obj_get_float_maybe() to handle the cases corresponding to floats.
Only if that fails does it attempt to extra a full complex number.
This reduces code size and also means that mp_obj_get_complex_maybe() now
supports user-defined classes defining __float__; in particular this allows
user-defined classes to be used as arguments to cmath-module function.
Furthermore, complex_make_new() can now be simplified to directly call
mp_obj_get_complex(), instead of mp_obj_get_complex_maybe() followed by
mp_obj_get_float(). This also improves error messages from complex with
an invalid argument, it now raises "can't convert <type> to complex" rather
than "can't convert <type> to float".
Signed-off-by: Damien George <damien@micropython.org>
Add cert_reqs and cadata keyword-args to ssl.wrap_socket() and
ssl.CERT_NONE, ssl.CERT_OPTIONAL, ssl.CERT_REQUIRED constants to allow
certificate validation.
CPython doesn't accept cadata in ssl.wrap_socket(), but it does in
SSLContext.load_verify_locations(), so we use this name to at least match
the same name in load_verify_locations().
Add docs for these new arguments, as well as docs for the existing
server_hostname argument which is important for certificate validation.
Tests are added as well.
Signed-off-by: Carlos Gil <carlosgilglez@gmail.com>
The empty tuple is usually a constant object, but named tuples must be
allocated to allow modification. Added explicit allocation to fix this.
Also added a regression test to verify creating an empty named tuple works.
Fixes issue #7870.
Signed-off-by: Lars Haulin <lars.haulin@gmail.com>
For STM32L072 and similar, very low end targets.
The other perf_bench tests run out of memory, crash, or fail on
prerequisite features.
Signed-off-by: Angus Gratton <gus@projectgus.com>
Prior to this commit, complex("j") would return 0j, and complex("nanj")
would return nan+0j. This commit makes sure "j" is tested for after
parsing the number (nan, inf or a decimal), and also supports the case of
"j" on its own.
Signed-off-by: Damien George <damien@micropython.org>
This changes the btree implementation to use the buffer protocol for
reading key/values in all methods. `str` and `bytes` objects are not the
only bytes-like objects that could be used.
Documentation and tests are also updated.
Addresses issue #8748.
Signed-off-by: David Lechner <david@pybricks.com>
This new logic tracks when an unconditional jump/raise occurs in the
emitted code stream (bytecode or native machine code) and suppresses all
subsequent code, until a label is assigned. This eliminates a lot of
cases of dead code, with relatively simple logic.
This commit combined with the previous one (that removed the existing
dead-code finding logic) has the following code size change:
bare-arm: -16 -0.028%
minimal x86: -60 -0.036%
unix x64: -368 -0.070%
unix nanbox: -80 -0.017%
stm32: -204 -0.052% PYBV10
cc3200: +0 +0.000%
esp8266: -232 -0.033% GENERIC
esp32: -224 -0.015% GENERIC[incl -40(data)]
mimxrt: -192 -0.054% TEENSY40
renesas-ra: -200 -0.032% RA6M2_EK
nrf: +28 +0.015% pca10040
rp2: -256 -0.050% PICO
samd: -12 -0.009% ADAFRUIT_ITSYBITSY_M4_EXPRESS
Signed-off-by: Damien George <damien@micropython.org>
The sys.tracebacklimit feature has changed semantics a bit from CPython 3.7
(in the way it modifies the output), so provide a .exp file for the test so
it doesn't rely on CPython.
Signed-off-by: Damien George <damien@micropython.org>
Support for architecture-specific qstr linking was removed in
d4d53e9e11, where native code was changed to
access qstr values via qstr_table. The only remaining use for the special
qstr link table in persistentcode.c is to support native module written in
C, linked via mpy_ld.py. But native modules can also use the standard
module-level qstr_table (and obj_table) which was introduced in the .mpy
file reworking in f2040bfc7e.
This commit removes the remaining native qstr liking support in
persistentcode.c's load_raw_code function, and adds two new relocation
options for constants.qstr_table and constants.obj_table. mpy_ld.py is
updated to use these relocations options instead of the native qstr link
table.
Signed-off-by: Damien George <damien@micropython.org>
This works if your network is pre-configured in boot.py as an object called
"nic". Without this, multitests expects to access the WLAN/LAN class which
isn't always correct.
Signed-off-by: Andrew Leech <andrew@alelec.net>
This fixes the cases where the task being waited on finishes just before or
just after the wait_for itself is cancelled.
Fixes issue #8717.
Signed-off-by: Damien George <damien@micropython.org>
And make it so this test can run on any target.
LED and time testing has been removed from this test, that can now be
tested using: ./run-tests.py --via-mpy --emit native.
Signed-off-by: Damien George <damien@micropython.org>
If a port is not using internal error numbers, which match both lwIP and
Linux error numbers, ENTOCONN from standard libraries errno.h equals 128,
not 107.
This enables the new `-X realtime` runtime option when running tests on
macOS. This causes MicroPython to configure all threads to be high
priority so that they are allowed to use high precision timers. This
makes tests that depend on the passage of time more likely to succeed.
CI tests that were disabled because of this are now enabled again.
Signed-off-by: David Lechner <david@pybricks.com>
The performance benchmark tests now support `--via-mpy` and `--emit native`
on remote targets. For example:
$ ./run-perfbench.py -p --via-mpy --emit native 100 100
Signed-off-by: Damien George <damien@micropython.org>
This adds support for the `--via-mpy` and `--emit native` options when
running tests on remote targets (via pyboard.py). It's now possible to do:
$ ./run-tests.py --target pyboard --via-mpy
$ ./run-tests.py --target pyboard --via-mpy --emit native
Signed-off-by: Damien George <damien@micropython.org>
Now that constant tuples are supported in the parser, eg (1, True, "str"),
it's a small step to allow anything that is a constant to be used with the
pattern:
from micropython import const
X = const(obj)
This commit makes the required changes to allow the following types of
constants:
from micropython import const
_INT = const(123)
_FLOAT = const(1.2)
_COMPLEX = const(3.4j)
_STR = const("str")
_BYTES = const(b"bytes")
_TUPLE = const((_INT, _STR, _BYTES))
_TUPLE2 = const((None, False, True, ..., (), _TUPLE))
Prior to this, only integers could be used in const(...).
Signed-off-by: Damien George <damien@micropython.org>
Because the test modifies the (now) bytearray object, and if it's a bytes
object it's not guaranteed that it can be modified, or that this constant
object isn't used elsewhere.
Signed-off-by: Damien George <damien@micropython.org>
Prior to this commit, all qstrs were required to be allocated (by calling
mp_emit_common_use_qstr) in the MP_PASS_SCOPE pass (the first one). But
this is an unnecessary restriction, which is lifted by this commit.
Lifting the restriction simplifies the compiler because it can allocate
qstrs in later passes.
This also generates better code, because in some cases (eg when a variable
is closed over) the scope of an identifier is not known until a bit later
and then the identifier no longer needs its qstr allocated in the global
table.
Code size is reduced for all ports with this commit.
Signed-off-by: Damien George <damien@micropython.org>
Prior to this commit, even with unicode disabled .py and .mpy files could
contain unicode characters, eg by entering them directly in a string as
utf-8 encoded.
The only thing the compiler disallowed (with unicode disabled) was using
\uxxxx and \Uxxxxxxxx notation to specify a character within a string with
value >= 0x100; that would give a SyntaxError.
With this change mpy-cross will now accept \u and \U notation to insert a
character with value >= 0x100 into a string (because the -mno-unicode
option is now gone, there's no way to forbid this). The runtime will
happily work with strings with such characters, just like it already works
with strings with characters that were utf-8 encoded directly.
This change simplifies things because there are no longer any feature
flags in .mpy files, and any bytecode .mpy will now run on any target.
Signed-off-by: Damien George <damien@micropython.org>
Non-real-time systems like Windows, Linux and macOS do not have reliable
timing, so increase the sleep intervals to make these tests more likely to
pass.
Signed-off-by: Damien George <damien@micropython.org>
When in a class body or at the module level don't implicitly close over
variables that have been assigned to.
Fixes issue #8603.
Signed-off-by: Damien George <damien@micropython.org>
This fixes a bug where the gather is cancelled externally and then one of
its sub-tasks (that the gather was waiting on) finishes right between the
cancellation being queued and being executed.
Signed-off-by: Damien George <damien@micropython.org>
This double-raise test could fail when task[0] raises and stops the gather
before task[1] raises, then task[1] is left to raise later on and spoil the
test.
Signed-off-by: Damien George <damien@micropython.org>
This commit adds support to the parser so that tuples which contain only
constant elements (bool, int, str, bytes, etc) are immediately converted to
a tuple object. This makes it more efficient to use tuples containing
constant data because they no longer need to be created at runtime by the
bytecode (or native code).
Furthermore, with this improvement constant tuples that are part of frozen
code are now able to be stored fully in ROM (this will be implemented in
later commits).
Code size is increased by about 400 bytes on Cortex-M4 platforms.
See related issue #722.
Signed-off-by: Damien George <damien@micropython.org>
This follows the CPython change: https://bugs.python.org/issue21455
Socket listen backlog defaults to 2 if not given, based on most bare metal
targets not having many resources for a large backlog. On UNIX it defaults
to SOMAXCONN or 128, whichever is less.
There were two issues with the existing code:
1. "1 << i" is computed as a 32-bit number so would overflow when
executed on 64-bit machines (when mp_uint_t is 64-bit). This meant that
*args beyond 32 positions would not be handled correctly.
2. star_args must fit as a positive small int so that it is encoded
correctly in the emitted code. MP_SMALL_INT_BITS is too big because it
overflows a small int by 1 bit. MP_SMALL_INT_BITS - 1 does not work
because it produces a signed small int which is then sign extended when
extracted (even by mp_obj_get_int_truncated), and this sign extension
means that any position arg after *args is also treated as a star-arg.
So the maximum bit position is MP_SMALL_INT_BITS - 2. This means that
MP_OBJ_SMALL_INT_VALUE() can be used instead of
mp_obj_get_int_truncated() to get the value of star_args.
These issues are fixed by this commit, and a test added.
Signed-off-by: Damien George <damien@micropython.org>
This fixes code coverage for the case where a *arg without __len__ is
unpacked and uses exactly the amount of memory that was allocated for
kw args. This triggers the code branch where the memory for the kw args
gets reallocated since it was used already by the *arg unpacking.
Signed-off-by: David Lechner <david@pybricks.com>
This is a partial implementation of PEP 448 to allow unpacking multiple
star args in a function or method call.
This is implemented by changing the emitted bytecodes so that both
positional args and star args are stored as positional args. A bitmap is
added to indicate if an argument at a given position is a positional
argument or a star arg.
In the generated code, this new bitmap takes the place of the old star arg.
It is stored as a small int, so this means only the first N arguments can
be star args where N is the number of bits in a small int.
The runtime is modified to interpret this new bytecode format while still
trying to perform as few memory reallocations as possible.
Signed-off-by: David Lechner <david@pybricks.com>
This is a partial implementation of PEP 448 to allow multiple ** unpackings
when calling a function or method.
The compiler is modified to encode the argument as a None: obj key-value
pair (similar to how regular keyword arguments are encoded as str: obj
pairs). The extra object that was pushed on the stack to hold a single **
unpacking object is no longer used and is removed.
The runtime is modified to decode this new format.
Signed-off-by: David Lechner <david@pybricks.com>
The following fixes are made:
- cancelling a gather now cancels all sub-tasks of the gather (previously
it would only cancel the first)
- if any sub-task of a gather raises an exception then the gather finishes
(previously it would only finish if the first sub-task raised)
Fixes issues #5798, #7807, #7901.
Signed-off-by: Damien George <damien@micropython.org>
This commit introduces changes:
- All jump opcodes are changed to have variable length arguments, of either
1 or 2 bytes (previously they were fixed at 2 bytes). In most cases only
1 byte is needed to encode the short jump offset, saving bytecode size.
- The bytecode emitter now selects 1 byte jump arguments when the jump
offset is guaranteed to fit in 1 byte. This is achieved by checking if
the code size changed during the last pass and, if it did (if it shrank),
then requesting that the compiler make another pass to get the correct
offsets of the now-smaller code. This can continue multiple times until
the code stabilises. The code can only ever shrink so this iteration is
guaranteed to complete. In most cases no extra passes are needed, the
original 4 passes are enough to get it right by the 4th pass (because the
2nd pass computes roughly the correct labels and the 3rd pass computes
the correct size for the jump argument).
This change to the jump opcode encoding reduces .mpy files and RAM usage
(when bytecode is in RAM) by about 2% on average.
The performance of the VM is not impacted, at least within measurment of
the performance benchmark suite.
Code size is reduced for builds that include a decent amount of frozen
bytecode. ARM Cortex-M builds without any frozen code increase by about
350 bytes.
Signed-off-by: Damien George <damien@micropython.org>
Background: .mpy files are precompiled .py files, built using mpy-cross,
that contain compiled bytecode functions (and can also contain machine
code). The benefit of using an .mpy file over a .py file is that they are
faster to import and take less memory when importing. They are also
smaller on disk.
But the real benefit of .mpy files comes when they are frozen into the
firmware. This is done by loading the .mpy file during compilation of the
firmware and turning it into a set of big C data structures (the job of
mpy-tool.py), which are then compiled and downloaded into the ROM of a
device. These C data structures can be executed in-place, ie directly from
ROM. This makes importing even faster because there is very little to do,
and also means such frozen modules take up much less RAM (because their
bytecode stays in ROM).
The downside of frozen code is that it requires recompiling and reflashing
the entire firmware. This can be a big barrier to entry, slows down
development time, and makes it harder to do OTA updates of frozen code
(because the whole firmware must be updated).
This commit attempts to solve this problem by providing a solution that
sits between loading .mpy files into RAM and freezing them into the
firmware. The .mpy file format has been reworked so that it consists of
data and bytecode which is mostly static and ready to run in-place. If
these new .mpy files are located in flash/ROM which is memory addressable,
the .mpy file can be executed (mostly) in-place.
With this approach there is still a small amount of unpacking and linking
of the .mpy file that needs to be done when it's imported, but it's still
much better than loading an .mpy from disk into RAM (although not as good
as freezing .mpy files into the firmware).
The main trick to make static .mpy files is to adjust the bytecode so any
qstrs that it references now go through a lookup table to convert from
local qstr number in the module to global qstr number in the firmware.
That means the bytecode does not need linking/rewriting of qstrs when it's
loaded. Instead only a small qstr table needs to be built (and put in RAM)
at import time. This means the bytecode itself is static/constant and can
be used directly if it's in addressable memory. Also the qstr string data
in the .mpy file, and some constant object data, can be used directly.
Note that the qstr table is global to the module (ie not per function).
In more detail, in the VM what used to be (schematically):
qst = DECODE_QSTR_VALUE;
is now (schematically):
idx = DECODE_QSTR_INDEX;
qst = qstr_table[idx];
That allows the bytecode to be fixed at compile time and not need
relinking/rewriting of the qstr values. Only qstr_table needs to be linked
when the .mpy is loaded.
Incidentally, this helps to reduce the size of bytecode because what used
to be 2-byte qstr values in the bytecode are now (mostly) 1-byte indices.
If the module uses the same qstr more than two times then the bytecode is
smaller than before.
The following changes are measured for this commit compared to the
previous (the baseline):
- average 7%-9% reduction in size of .mpy files
- frozen code size is reduced by about 5%-7%
- importing .py files uses about 5% less RAM in total
- importing .mpy files uses about 4% less RAM in total
- importing .py and .mpy files takes about the same time as before
The qstr indirection in the bytecode has only a small impact on VM
performance. For stm32 on PYBv1.0 the performance change of this commit
is:
diff of scores (higher is better)
N=100 M=100 baseline -> this-commit diff diff% (error%)
bm_chaos.py 371.07 -> 357.39 : -13.68 = -3.687% (+/-0.02%)
bm_fannkuch.py 78.72 -> 77.49 : -1.23 = -1.563% (+/-0.01%)
bm_fft.py 2591.73 -> 2539.28 : -52.45 = -2.024% (+/-0.00%)
bm_float.py 6034.93 -> 5908.30 : -126.63 = -2.098% (+/-0.01%)
bm_hexiom.py 48.96 -> 47.93 : -1.03 = -2.104% (+/-0.00%)
bm_nqueens.py 4510.63 -> 4459.94 : -50.69 = -1.124% (+/-0.00%)
bm_pidigits.py 650.28 -> 644.96 : -5.32 = -0.818% (+/-0.23%)
core_import_mpy_multi.py 564.77 -> 581.49 : +16.72 = +2.960% (+/-0.01%)
core_import_mpy_single.py 68.67 -> 67.16 : -1.51 = -2.199% (+/-0.01%)
core_qstr.py 64.16 -> 64.12 : -0.04 = -0.062% (+/-0.00%)
core_yield_from.py 362.58 -> 354.50 : -8.08 = -2.228% (+/-0.00%)
misc_aes.py 429.69 -> 405.59 : -24.10 = -5.609% (+/-0.01%)
misc_mandel.py 3485.13 -> 3416.51 : -68.62 = -1.969% (+/-0.00%)
misc_pystone.py 2496.53 -> 2405.56 : -90.97 = -3.644% (+/-0.01%)
misc_raytrace.py 381.47 -> 374.01 : -7.46 = -1.956% (+/-0.01%)
viper_call0.py 576.73 -> 572.49 : -4.24 = -0.735% (+/-0.04%)
viper_call1a.py 550.37 -> 546.21 : -4.16 = -0.756% (+/-0.09%)
viper_call1b.py 438.23 -> 435.68 : -2.55 = -0.582% (+/-0.06%)
viper_call1c.py 442.84 -> 440.04 : -2.80 = -0.632% (+/-0.08%)
viper_call2a.py 536.31 -> 532.35 : -3.96 = -0.738% (+/-0.06%)
viper_call2b.py 382.34 -> 377.07 : -5.27 = -1.378% (+/-0.03%)
And for unix on x64:
diff of scores (higher is better)
N=2000 M=2000 baseline -> this-commit diff diff% (error%)
bm_chaos.py 13594.20 -> 13073.84 : -520.36 = -3.828% (+/-5.44%)
bm_fannkuch.py 60.63 -> 59.58 : -1.05 = -1.732% (+/-3.01%)
bm_fft.py 112009.15 -> 111603.32 : -405.83 = -0.362% (+/-4.03%)
bm_float.py 246202.55 -> 247923.81 : +1721.26 = +0.699% (+/-2.79%)
bm_hexiom.py 615.65 -> 617.21 : +1.56 = +0.253% (+/-1.64%)
bm_nqueens.py 215807.95 -> 215600.96 : -206.99 = -0.096% (+/-3.52%)
bm_pidigits.py 8246.74 -> 8422.82 : +176.08 = +2.135% (+/-3.64%)
misc_aes.py 16133.00 -> 16452.74 : +319.74 = +1.982% (+/-1.50%)
misc_mandel.py 128146.69 -> 130796.43 : +2649.74 = +2.068% (+/-3.18%)
misc_pystone.py 83811.49 -> 83124.85 : -686.64 = -0.819% (+/-1.03%)
misc_raytrace.py 21688.02 -> 21385.10 : -302.92 = -1.397% (+/-3.20%)
The code size change is (firmware with a lot of frozen code benefits the
most):
bare-arm: +396 +0.697%
minimal x86: +1595 +0.979% [incl +32(data)]
unix x64: +2408 +0.470% [incl +800(data)]
unix nanbox: +1396 +0.309% [incl -96(data)]
stm32: -1256 -0.318% PYBV10
cc3200: +288 +0.157%
esp8266: -260 -0.037% GENERIC
esp32: -216 -0.014% GENERIC[incl -1072(data)]
nrf: +116 +0.067% pca10040
rp2: -664 -0.135% PICO
samd: +844 +0.607% ADAFRUIT_ITSYBITSY_M4_EXPRESS
As part of this change the .mpy file format version is bumped to version 6.
And mpy-tool.py has been improved to provide a good visualisation of the
contents of .mpy files.
In summary: this commit changes the bytecode to use qstr indirection, and
reworks the .mpy file format to be simpler and allow .mpy files to be
executed in-place. Performance is not impacted too much. Eventually it
will be possible to store such .mpy files in a linear, read-only, memory-
mappable filesystem so they can be executed from flash/ROM. This will
essentially be able to replace frozen code for most applications.
Signed-off-by: Damien George <damien@micropython.org>
Some versions of Python (for instance: the mingw-w64 version which can be
installed on MSYS2) do include a pty module and claim to be posix-like
(os.name == 'posix'), yet the select.select call used in run-tests.py hangs
forever. To be on the safe side just exclude anything which might be
running on windows.
A script will print "SKIP" if it wants to be skipped, so the test runner
must also use uppercase SKIP.
Signed-off-by: Damien George <damien@micropython.org>
The current test depends on a specific number and order of packets to pass,
which can't be reproduced every run due to the unreliable UDP protocol.
This patch adds simple packets sequencing, retransmits with timeouts, and a
packet loss threshold, to make the test more tolerant to UDP protocol
packet drops and reordering.
This allows encoding things (eg a Basic-Auth header for a request) without
slicing the \n from the string, which allocates additional memory.
Co-authored-by: David Lechner <david@lechnology.com>
The new test has an .exp file, because it is not compatible with Python 3.9
and lower.
See CPython version of the issue at https://bugs.python.org/issue27772
Signed-off-by: Jeff Epler <jepler@gmail.com>
BLE still functions correctly even though these messages are sometimes
printed by the IDF. Ignoring them allows the multi_bluetooth tests to pass
on an esp32 board.
Signed-off-by: Damien George <damien@micropython.org>
In commit 86ce442607 the '.frozen' entry was
added at the start of sys.path, to allow control over when frozen modules
are searched during import, and retain existing behaviour whereby frozen
was searched before the filesystem.
But Python semantics of sys.path require sys.path[0] to be the directory of
the currently executing script, or ''.
This commit moves the '.frozen' entry to second place in sys.path, so
sys.path[0] retains its correct value (described above).
Signed-off-by: Damien George <damien@micropython.org>
This commit makes sure that the value zero is always encoded in an mpz_t as
neg=0 and len=0 (previously it was just len=0).
This invariant is needed for some of the bitwise operations that operate on
negative numbers, because they cannot handle -0. For example
(-((1<<100)-(1<<100)))|1 was being computed as -65535, instead of 1.
Fixes issue #8042.
Signed-off-by: Damien George <damien@micropython.org>
This feature is not enabled on any port, it's not in CPython's io module,
and functionality is better suited to the micropython-lib implementation of
pkg_resources.
Expected result of const.py will be matched only when MICROPY_COMP_CONST is
enabled. For easy understanding, added description at the first of the
test code.
This commit removes all parts of code associated with the existing
MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE optimisation option, including the
-mcache-lookup-bc option to mpy-cross.
This feature originally provided a significant performance boost for Unix,
but wasn't able to be enabled for MCU targets (due to frozen bytecode), and
added significant extra complexity to generating and distributing .mpy
files.
The equivalent performance gain is now provided by the combination of
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE (which has
been enabled on the unix port in the previous commit).
It's hard to provide precise performance numbers, but tests have been run
on a wide variety of architectures (x86-64, ARM Cortex, Aarch64, RISC-V,
xtensa) and they all generally agree on the qualitative improvements seen
by the combination of MICROPY_OPT_LOAD_ATTR_FAST_PATH and
MICROPY_OPT_MAP_LOOKUP_CACHE.
For example, on a "quiet" Linux x64 environment (i3-5010U @ 2.10GHz) the
change from CACHE_MAP_LOOKUP_IN_BYTECODE, to LOAD_ATTR_FAST_PATH combined
with MAP_LOOKUP_CACHE is:
diff of scores (higher is better)
N=2000 M=2000 bccache -> attrmapcache diff diff% (error%)
bm_chaos.py 13742.56 -> 13905.67 : +163.11 = +1.187% (+/-3.75%)
bm_fannkuch.py 60.13 -> 61.34 : +1.21 = +2.012% (+/-2.11%)
bm_fft.py 113083.20 -> 114793.68 : +1710.48 = +1.513% (+/-1.57%)
bm_float.py 256552.80 -> 243908.29 : -12644.51 = -4.929% (+/-1.90%)
bm_hexiom.py 521.93 -> 625.41 : +103.48 = +19.826% (+/-0.40%)
bm_nqueens.py 197544.25 -> 217713.12 : +20168.87 = +10.210% (+/-3.01%)
bm_pidigits.py 8072.98 -> 8198.75 : +125.77 = +1.558% (+/-3.22%)
misc_aes.py 17283.45 -> 16480.52 : -802.93 = -4.646% (+/-0.82%)
misc_mandel.py 99083.99 -> 128939.84 : +29855.85 = +30.132% (+/-5.88%)
misc_pystone.py 83860.10 -> 82592.56 : -1267.54 = -1.511% (+/-2.27%)
misc_raytrace.py 21490.40 -> 22227.23 : +736.83 = +3.429% (+/-1.88%)
This shows that the new optimisations are at least as good as the existing
inline-bytecode-caching, and are sometimes much better (because the new
ones apply caching to a wider variety of map lookups).
The new optimisations can also benefit code generated by the native
emitter, because they apply to the runtime rather than the generated code.
The improvement for the native emitter when LOAD_ATTR_FAST_PATH and
MAP_LOOKUP_CACHE are enabled is (same Linux environment as above):
diff of scores (higher is better)
N=2000 M=2000 native -> nat-attrmapcache diff diff% (error%)
bm_chaos.py 14130.62 -> 15464.68 : +1334.06 = +9.441% (+/-7.11%)
bm_fannkuch.py 74.96 -> 76.16 : +1.20 = +1.601% (+/-1.80%)
bm_fft.py 166682.99 -> 168221.86 : +1538.87 = +0.923% (+/-4.20%)
bm_float.py 233415.23 -> 265524.90 : +32109.67 = +13.756% (+/-2.57%)
bm_hexiom.py 628.59 -> 734.17 : +105.58 = +16.796% (+/-1.39%)
bm_nqueens.py 225418.44 -> 232926.45 : +7508.01 = +3.331% (+/-3.10%)
bm_pidigits.py 6322.00 -> 6379.52 : +57.52 = +0.910% (+/-5.62%)
misc_aes.py 20670.10 -> 27223.18 : +6553.08 = +31.703% (+/-1.56%)
misc_mandel.py 138221.11 -> 152014.01 : +13792.90 = +9.979% (+/-2.46%)
misc_pystone.py 85032.14 -> 105681.44 : +20649.30 = +24.284% (+/-2.25%)
misc_raytrace.py 19800.01 -> 23350.73 : +3550.72 = +17.933% (+/-2.79%)
In summary, compared to MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE, the new
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE options:
- are simpler;
- take less code size;
- are faster (generally);
- work with code generated by the native emitter;
- can be used on embedded targets with a small and constant RAM overhead;
- allow the same .mpy bytecode to run on all targets.
See #7680 for further discussion. And see also #7653 for a discussion
about simplifying mpy-cross options.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This feature {x=} was introduced in Python 3.8 so needs a separate .exp
file to run on earlier Python versions.
See https://bugs.python.org/issue36817
Signed-off-by: Damien George <damien@micropython.org>
This achieves a substantial performance improvement when rendering glyphs
to color displays, the benefit increasing proportional to the number of
pixels in the glyph.
Prevents the finaliser from being missed if there's a dangling reference
on the stack to one of the blocks for the files (that this test checks
that they get finalised).
See github.com/micropython/micropython/pull/7659#issuecomment-899479793
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This tests both sending indications/notifications from a server to
subscribed clients via gatts_write(...,send_update=True) and subscribing
from a client.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This implements (most of) the PEP-498 spec for f-strings and is based on
https://github.com/micropython/micropython/pull/4998 by @klardotsh.
It is implemented in the lexer as a syntax translation to `str.format`:
f"{a}" --> "{}".format(a)
It also supports:
f"{a=}" --> "a={}".format(a)
This is done by extracting the arguments into a temporary vstr buffer,
then after the string has been tokenized, the lexer input queue is saved
and the contents of the temporary vstr buffer are injected into the lexer
instead.
There are four main limitations:
- raw f-strings (`fr` or `rf` prefixes) are not supported and will raise
`SyntaxError: raw f-strings are not supported`.
- literal concatenation of f-strings with adjacent strings will fail
"{}" f"{a}" --> "{}{}".format(a) (str.format will incorrectly use
the braces from the non-f-string)
f"{a}" f"{a}" --> "{}".format(a) "{}".format(a) (cannot concatenate)
- PEP-498 requires the full parser to understand the interpolated
argument, however because this entirely runs in the lexer it cannot
resolve nested braces in expressions like
f"{'}'}"
- The !r, !s, and !a conversions are not supported.
Includes tests and cpydiffs.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The correct callback-deregister functions must be called dependent on the
socket type, otherwise resources may not be freed correctly.
Signed-off-by: Damien George <damien@micropython.org>
Test instances can now use the following methods to synchronise their
execution:
multitest.broadcast("sync message")
multitest.wait("sync message")
Signed-off-by: Damien George <damien@micropython.org>
Previously a subclass of a type that didn't implement unary_op, or didn't
handle MP_UNARY_OP_BOOL, would raise TypeError on bool conversion.
Fixes#5677.
Replace "master" with "controller" and "slave" with "peripheral" in
comments, errors, and debug messages.
Add CONTROLLER and PERIPHERAL constants to pyb.SPI and pyb.I2C classes;
retain MASTER and SLAVE constants for backward compatiblity.
The MP_OBJ_STOP_ITERATION optimisation is a shortcut for creating a
StopIteration() exception object, and means that heap memory does not need
to be allocated for the exception (in cases where it can be used). This
commit allows this optimised object to take an optional argument (before,
it could only have no argument).
The commit also adds some new tests to cover corner cases with
StopIteration and generators that previously did not work.
Signed-off-by: Damien George <damien@micropython.org>
This test snuck through without proper formatting and is causing CI for
other unrelated changes to fail.
Signed-off-by: David Lechner <david@pybricks.com>
Currently when using uasyncio.start_server() the socket configuration is
done inside a uasyncio.create_task() background function. If the address
and port are already in use however this throws an OSError which cannot be
cleanly caught behind the create_task().
This commit moves the getaddrinfo and socket binding to the start_server()
function, and only creates the task if that succeeds. This means that any
OSError from the initial socket configuration is propagated directly up the
call stack, compatible with CPython behaviour.
See #7444.
Signed-off-by: Damien George <damien@micropython.org>
2.5 can be represented correctly in object representation C, but 2.3 cannot
(it is slightly truncated).
Signed-off-by: Damien George <damien@micropython.org>
This commit fixes a problem with a race between cancellation of task A and
completion of task B, when A waits on B. If task B completes just before
task A is cancelled then the cancellation of A does not work. Instead,
the CancelledError meant to cancel A gets passed through to B (that's
expected behaviour) but B handles it as a "Task exception wasn't retrieved"
scenario, printing out such a message (this is because finished tasks point
their "coro" attribute to themselves to indicate they are done, and
implement the throw() method, but that method inadvertently catches the
CancelledError). The correct behaviour is for B to bounce that
CancelledError back out.
This bug is mainly seen when wait_for() is used, and in that context the
symptoms are:
- occurs when using wait_for(T, S), if the task T being waited on finishes
at exactly the same time as the wait-for timeout S expires
- task T will have run to completion
- the "Task exception wasn't retrieved message" is printed with
"<class 'CancelledError'>" as the error (ie no traceback)
- the wait_for(T, S) call never returns (it's never put back on the
uasyncio run queue) and all tasks waiting on this are blocked forever
from running
- uasyncio otherwise continues to function and other tasks continue to be
scheduled as normal
The fix here reworks the "waiting" attribute of Task to be called "state"
and uses it to indicate whether a task is: running and not awaited on,
running and awaited on, finished and not awaited on, or finished and
awaited on. This means the task does not need to point "coro" to itself to
indicate finished, and also allows removal of the throw() method.
A benefit of this is that "Task exception wasn't retrieved" messages can go
back to being able to print the name of the coroutine function.
Fixes issue #7386.
Signed-off-by: Damien George <damien@micropython.org>
With docs and a multi-test using TCP server/client.
This method is a MicroPython extension, although there is discussion of
adding it to CPython: https://bugs.python.org/issue41305
Signed-off-by: Mike Teachman <mike.teachman@gmail.com>