This adds to the ESP8266 tutorial instructions explaining which pins to
pull low to enter programming mode.
Commit made originally by @ARF1 in #2910.
Signed-off-by: Damien George <damien@micropython.org>
This adds an initial specification of the machine.PWM class, to provide a
way to generate PWM output that is portable across the different ports.
Such functionality may already be available in one way or another (eg
through a Timer object), but because configuring PWM via a Timer is very
port-specific, and because it's a common thing to do, it's beneficial to
have a top-level construct for it.
The specification in this commit aims to provide core functionality in a
minimal way. It also somewhat matches most existing ad-hoc implementations
of machine.PWM.
See discussion in #2283 and #4237.
Signed-off-by: Damien George <damien@micropython.org>
This commit adds the errno attribute to exceptions, so code can retrieve
errno codes from an OSError using exc.errno.
The implementation here simply lets `errno` (and the existing `value`)
attributes work on any exception instance (they both alias args[0]). This
is for efficiency and to keep code size down. The pros and cons of this
are:
Pros:
- more compatible with CPython, less difference to document and learn
- OSError().errno will correctly return None, whereas the current way of
doing it via OSError().args[0] will raise an IndexError
- it reduces code size on most bare-metal ports (because they already have
the errno qstr)
- for Python code that uses exc.errno the generated bytecode is 2 bytes
smaller and more efficient to execute (compared with exc.args[0]); so
bytecode loaded to RAM saves 2 bytes RAM for each use of this attribute,
and bytecode that is frozen saves 2 bytes flash/ROM for each use
- it's easier/shorter to type, and saves 2 bytes of space in .py files that
use it (for each use)
Cons:
- increases code size by 4-8 bytes on minimal ports that don't already have
the `errno` qstr
- all exceptions now have .errno and .value attributes (a cpydiff test is
added to address this)
See also #2407.
Signed-off-by: Damien George <damien@micropython.org>
Make and CMake builds are slightly different and these changes help make it
clear what to do in each case.
Signed-off-by: Damien George <damien@micropython.org>
It's a bit of a pitfall with user C modules that including them in the
build does not automatically enable them. This commit changes the docs and
examples for user C modules to encourage writers of user C modules to
enable them unconditionally. This makes things simpler and covers most use
cases.
See discussion in issue #6960, and also #7086.
Signed-off-by: Damien George <damien@micropython.org>
Documents the micropython.cmake file required to make user C modules
compatible with the CMake build system.
Signed-off-by: Phil Howard <phil@pimoroni.com>
Add most formatting-only commits to this file so that when used with
git blame, these commits are excluded and the output shows only the
interesting bits.
This commit implements basic NVS support for the esp32. It follows the
pattern of the esp32.Partition class and exposes an NVS object per NVS
namespace. The initial support provided is only for signed 32-bit integers
and binary blobs. It's easy (albeit a bit tedious) to add support for
more types.
See discussions in: #4436, #4707, #6780
This commit adds many new sections to the existing "Developing and building
MicroPython" chapter to make it all about the internals of MicroPython.
This work was done as part of Google's Season of Docs 2020.
Calculate the bit timing from baudrate if provided, allowing sample point
override. This makes it a lot easier to make CAN work between different
MCUs with different clocks, prescalers etc.
Tested on F4, F7 and H7 Y/V variants.
Since CPython 3.8 the optional "sep" argument to hexlify is officially
supported, so update comments in the code and the docs to reflect this.
Signed-off-by: Damien George <damien@micropython.org>
This allows the application to be notified if any of encrypted,
authenticated and bonded state change, as well as the encryption key size.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Add working example code to provide a starting point for users with files
that they can just copy, and include the modules in the coverage test to
verify the complete user C module build functionality. The cexample module
uses the code originally found in cmodules.rst, which has been updated to
reflect this and partially rewritten with more complete information.
Support C++ code in .cpp files by providing CXX counterparts of the
_USERMOD_ flags we have for C already. This merely enables the Makefile of
user C modules to use variables specific to C++ compilation, it is still up
to each port's main Makefile to also include these in the build.
It requires mp_hal_time_ns() to be provided by a port. This function
allows very accurate absolute timestamps.
Enabled on unix, windows, stm32, esp8266 and esp32.
Signed-off-by: Damien George <damien@micropython.org>
A read-only memoryview object is a better representation of the data, which
is owned by the ubluetooth module and may change between calls to the
user's irq callback function.
Signed-off-by: Damien George <damien@micropython.org>
To portably get the Epoch. This is simply aliased to localtime() on ports
that are not timezone aware.
Signed-off-by: Damien George <damien@micropython.org>
This is consistent with the other 'micro' modules and allows implementing
additional features in Python via e.g. micropython-lib's sys.
Note this is a breaking change (not backwards compatible) for ports which
do not enable weak links, as "import sys" must now be replaced with
"import usys".
This adds an additional optional parameter to gap_scan() to select active
scanning, where scan responses are returned as well as normal scan results.
This parameter is False by default which retains the existing behaviour.
This commit adds support for modification time of files on littlefs v2
filesystems, using file attributes. For some background see issue #6114.
Features/properties of this implementation:
- Only supported on littlefs2 (not littlefs1).
- Uses littlefs2's general file attributes to store the timestamp.
- The timestamp is 64-bits and stores nanoseconds since 1970/1/1 (if the
range to the year 2554 is not enough then additional bits can be added to
this timestamp by adding another file attribute).
- mtime is enabled by default but can be disabled in the constructor, eg:
uos.mount(uos.VfsLfs2(bdev, mtime=False), '/flash')
- It's fully backwards compatible, existing littlefs2 filesystems will work
without reformatting and timestamps will be added transparently to
existing files (once they are opened for writing).
- Files without timestamps will open correctly, and stat will just return 0
for their timestamp.
- mtime can be disabled or enabled each mount time and timestamps will only
be updated if mtime is enabled (otherwise they will be untouched).
Signed-off-by: Damien George <damien@micropython.org>
Latest versions of Sphinx (at least 3.1.0) do not need the `*` escaped and
will render the `\` in the output if it is there, so remove it.
Fixes issue #6209.
The ESP32 RMT peripheral has hardware support for a carrier frequency, and
this commit exposes it to Python with the keyword arguments carrier_freq
and carrier_duty_percent in the constructor. Example usage:
r = esp32.RMT(0, pin=Pin(2), clock_div=80, carrier_freq=38000, carrier_duty_percent=50)
This patch adds quickref documentation for the change in commit
afd0701bf7. This commit added the ability to
disable the REPL and hence use UART0 for serial communication on the
esp8266, but was not previously documented anywhere.
The text is largely taken from the commit message, with generic information
on using the UART duplicated from the Wipy quickref document.
This enables warnings as errors and fixes all current errors, namely:
- reference to terms in the glossary must now be explicit (:term:)
- method overloads must not be declared as a separate method or must
use :noindex:
- 2 cases where `` should have been used instead of `
This commit makes sure that all discovery complete and read/write status
events set the status to zero on success.
The status value will be implementation-dependent on non-success cases.
This commit allows the user to set/get the GAP device name used by service
0x1800, characteristic 0x2a00. The usage is:
BLE.config(gap_name="myname")
print(BLE.config("gap_name"))
As part of this change the compile-time setting
MICROPY_PY_BLUETOOTH_DEFAULT_NAME is renamed to
MICROPY_PY_BLUETOOTH_DEFAULT_GAP_NAME to emphasise its link to GAP and this
new "gap_name" config value. And the default value of this for the NimBLE
bindings is changed from "PYBD" to "MPY NIMBLE" to be more generic.
This commit adds several small items to improve the support for OTA
updates on an esp32:
- a partition table for 4MB flash modules that has two OTA partitions ready
to go to do updates
- a GENERIC_OTA board that uses that partition table and that enables
automatic roll-back in the bootloader
- a new esp32.Partition.mark_app_valid_cancel_rollback() class-method to
signal that the boot is successful and should not be rolled back at the
next reset
- an automated test for doing an OTA update
- documentation updates
This commit adds full support to the unix port for Bluetooth using the
common extmod/modbluetooth Python bindings. This uses the libusb HCI
transport, which supports many common USB BT adaptors.
This commit adds an idf_heap_info(capabilities) method to the esp32 module
which returns info about the ESP-IDF heaps. It's useful to get a bit of a
picture of what's going on when code fails because ESP-IDF can't allocate
memory anymore. Includes documentation and a test.
This commit adds Loop.new_event_loop() which is used to reset the singleton
event loop. This functionality is put here instead of in Loop.close() to
make it possible to write code that is compatible with CPython.
This commit changes the esp8266 boards to use littlefs v2 as the
filesystem, rather than FAT. Since the esp8266 doesn't expose the
filesystem to the PC over USB there's no strong reason to keep it as FAT.
Littlefs is smaller in code size, is more efficient in use of flash to
store data, is resilient over power failure, and using it saves about 4k of
heap RAM, which can now be used for other things.
This is a backwards incompatible change because all existing esp8266 boards
will need to update their filesystem after installing new firmware (eg
backup old files, install firmware, restore files to new filesystem).
As part of this commit the memory layout of the default board (GENERIC) has
changed. It now allocates all 1M of memory-mapped flash to the firmware,
so the filesystem area starts at the 2M point. This is done to allow more
frozen bytecode to be stored in the 1M of memory-mapped flash. This
requires an esp8266 module with 2M or more of flash to work, so a new board
called GENERIC_1M is added which has the old memory-mapping (but still
changed to use littlefs for the filesystem).
In summary there are now 3 esp8266 board definitions:
- GENERIC_512K: for 512k modules, doesn't have a filesystem.
- GENERIC_1M: for 1M modules, 572k for firmware+frozen code, 396k for
filesystem (littlefs).
- GENERIC: for 2M (or greater) modules, 968k for firmware+frozen code,
1M+ for filesystem (littlefs), FAT driver also included in firmware for
use on, eg, external SD cards.