As long as a port implement mp_hal_sleep_ms(), mp_hal_ticks_ms(), etc.
functions, it can just use standard implementations of utime.sleel_ms(),
utime.ticks_ms(), etc. Python-level functions.
This new config option allows to control whether MicroPython uses its own
internal printf or not (if not, an external one should be linked in).
Accompanying this new option is the inclusion of lib/utils/printf.c in the
core list of source files, so that ports no longer need to include it
themselves.
The idea is that all ports can use these helper methods and only need to
provide initialisation of the SPI bus, as well as a single transfer
function. The coding pattern follows the stream protocol and helper
methods.
There can be stray pointers in memory blocks that are not properly zero'd
after allocation. This patch adds a new config option to always zero all
allocated memory (via gc_alloc and gc_realloc) and hence help to eliminate
stray pointers.
See issue #2195.
To filter out even prototypes of mp_stream_posix_*() functions, which
require POSIX types like ssize_t & off_t, which may be not available in
some ports.
Something like:
if foo == "bar":
will be always false if foo is b"bar". In CPython, warning is issued if
interpreter is started as "python3 -b". In MicroPython,
MICROPY_PY_STR_BYTES_CMP_WARN setting controls it.
Currently, MicroPython runs GC when it could not allocate a block of memory,
which happens when heap is exhausted. However, that policy can't work well
with "inifinity" heaps, e.g. backed by a virtual memory - there will be a
lot of swap thrashing long before VM will be exhausted. Instead, in such
cases "allocation threshold" policy is used: a GC is run after some number of
allocations have been made. Details vary, for example, number or total amount
of allocations can be used, threshold may be self-adjusting based on GC
outcome, etc.
This change implements a simple variant of such policy for MicroPython. Amount
of allocated memory so far is used for threshold, to make it useful to typical
finite-size, and small, heaps as used with MicroPython ports. And such GC policy
is indeed useful for such types of heaps too, as it allows to better control
fragmentation. For example, if a threshold is set to half size of heap, then
for an application which usually makes big number of small allocations, that
will (try to) keep half of heap memory in a nice defragmented state for an
occasional large allocation.
For an application which doesn't exhibit such behavior, there won't be any
visible effects, except for GC running more frequently, which however may
affect performance. To address this, the GC threshold is configurable, and
by default is off so far. It's configured with gc.threshold(amount_in_bytes)
call (can be queries without an argument).
Disabled by default, enabled in unix port. Need for this method easily
pops up when working with text UI/reporting, and coding workalike
manually again and again counter-productive.
The config variable MICROPY_MODULE_FROZEN is now made of two separate
parts: MICROPY_MODULE_FROZEN_STR and MICROPY_MODULE_FROZEN_MPY. This
allows to have none, either or both of frozen strings and frozen mpy
files (aka frozen bytecode).
They are sugar for marking function as generator, "yield from"
and pep492 python "semantically equivalents" respectively.
@dpgeorge was the original author of this patch, but @pohmelie made
changes to implement `async for` and `async with`.
This new compile-time option allows to make the bytecode compiler
configurable at runtime by setting the fields in the mp_dynamic_compiler
structure. By using this feature, the compiler can generate bytecode
that targets any MicroPython runtime/VM, regardless of the host and
target compile-time settings.
Options so far that fall under this dynamic setting are:
- maximum number of bits that a small int can hold;
- whether caching of lookups is used in the bytecode;
- whether to use unicode strings or not (lexer behaviour differs, and
therefore generated string constants differ).
These can be used to insert arbitrary checks, polling, etc into the VM.
They are left general because the VM is a highly tuned loop and it should
be up to a given port how that port wants to modify the VM internals.
One common use would be to insert a polling check, but only done after
a certain number of opcodes were executed, so as not to slow down the VM
too much. For example:
#define MICROPY_VM_HOOK_COUNT (30)
#define MICROPY_VM_HOOK_INIT static uint vm_hook_divisor = MICROPY_VM_HOOK_COUNT
#define MICROPY_VM_HOOK_POLL if (--vm_hook_divisor == 0) { \
vm_hook_divisor = MICROPY_VM_HOOK_COUNT;
extern void vm_hook_function(void);
vm_hook_function();
}
#define MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_POLL
#define MICROPY_VM_HOOK_RETURN MICROPY_VM_HOOK_POLL
For these 3 bitwise operations there are now fast functions for
positive-only arguments, and general functions for arbitrary sign
arguments (the fast functions are the existing implementation).
By default the fast functions are not used (to save space) and instead
the general functions are used for all operations.
Enable MICROPY_OPT_MPZ_BITWISE to use the fast functions for positive
arguments.
Functions added are:
- randint
- randrange
- choice
- random
- uniform
They are enabled with configuration variable
MICROPY_PY_URANDOM_EXTRA_FUNCS, which is disabled by default. It is
enabled for unix coverage build and stmhal.
Seedable and reproducible pseudo-random number generator. Implemented
functions are getrandbits(n) (n <= 32) and seed().
The algorithm used is Yasmarang by Ilya Levin:
http://www.literatecode.com/yasmarang
POSIX doesn't guarantee something like that to work, but it works on any
system with careful signal implementation. Roughly, the requirement is
that signal handler is executed in the context of the process, its main
thread, etc. This is true for Linux. Also tested to work without issues
on MacOSX.
This makes all tests pass again for 64bit windows builds which would
previously fail for anything printing ranges (builtin_range/unpack1)
because they were printed as range( ld, ld ).
This is done by reusing the mp_vprintf implementation for MICROPY_OBJ_REPR_D
for 64bit windows builds (both msvc and mingw-w64) since the format specifier
used for 64bit integers is also %lld, or %llu for the unsigned version.
Note these specifiers used to be fetched from inttypes.h, which is the
C99 way of working with printf/scanf in a portable way, but mingw-w64
wants to be backwards compatible with older MS C runtimes and uses
the non-portable %I64i instead of %lld in inttypes.h, so remove the use
of said header again in mpconfig.h and define the specifiers manually.
MICROPY_ENABLE_COMPILER can be used to enable/disable the entire compiler,
which is useful when only loading of pre-compiled bytecode is supported.
It is enabled by default.
MICROPY_PY_BUILTINS_EVAL_EXEC controls support of eval and exec builtin
functions. By default they are only included if MICROPY_ENABLE_COMPILER
is enabled.
Disabling both options saves about 40k of code size on 32-bit x86.
To use, put the following in mpconfigport.h:
#define MICROPY_OBJ_REPR (MICROPY_OBJ_REPR_D)
#define MICROPY_FLOAT_IMPL (MICROPY_FLOAT_IMPL_DOUBLE)
typedef int64_t mp_int_t;
typedef uint64_t mp_uint_t;
#define UINT_FMT "%llu"
#define INT_FMT "%lld"
Currently does not work with native emitter enabled.
- add mp_int_t/mp_uint_t typedefs in mpconfigport.h
- fix integer suffixes/formatting in mpconfig.h and mpz.h
- use MICROPY_NLR_SETJMP=1 in Makefile since the current nlrx64.S
implementation causes segfaults in gc_free()
- update README
MICROPY_PERSISTENT_CODE must be enabled, and then enabling
MICROPY_PERSISTENT_CODE_LOAD/SAVE (either or both) will allow loading
and/or saving of code (at the moment just bytecode) from/to a .mpy file.
Main changes when MICROPY_PERSISTENT_CODE is enabled are:
- qstrs are encoded as 2-byte fixed width in the bytecode
- all pointers are removed from bytecode and put in const_table (this
includes const objects and raw code pointers)
Ultimately this option will enable persistence for not just bytecode but
also native code.
This patch adds/subtracts a constant from the 30-bit float representation
so that str/qstr representations are favoured: they now have all the high
bits set to zero. This makes encoding/decoding qstr strings more
efficient (and they are used more often than floats, which are now
slightly less efficient to encode/decode).
Saves about 300 bytes of code space on Thumb 2 arch.
This new object representation puts floats into the object word instead
of on the heap, at the expense of reducing their precision to 30 bits.
It only makes sense when the word size is 32-bits.