It's more robust to have the version defined statically in a header file,
rather than dynamically generating it via git using a git tag. In case
git doesn't exist, or a different source control tool is used, it's
important to still have the uPy version number available.
SHORT, INT, LONG, LONGLONG, and unsigned (U*) variants are being defined.
This is done at compile using GCC-style predefined macros like
__SIZEOF_INT__. If the compiler doesn't have such defines, no such types
will be defined.
The recent implementation of the listen backlog meant that the logic to
test for readability of such a socket changed, and this commit updates the
logic to work again.
Array to hold waiting connections is in-place if backlog=1, else is a
dynamically allocated array. Incoming connections are processed FIFO
style to maintain fairness.
sizeof() can work in two ways: a) calculate size of already instantiated
structure ("sizeof variable") - in this case we already no layout; b) size
of structure decsription ("sizeof type"). In the latter case, LAYOUT_NATIVE
was assumed, but there should possibility to calculate size for other
layouts too. So, with this patch, there're now 2 forms:
uctypes.sizeof(struct)
uctypes.sizeof(struct_desc, layout)
This value is unused. It was an artifact of early draft design, but
bitfields were optimized to use scalar one-word encoding, to allow
compact encoding of typical multiple bitfields in MCU control
registers.
Since mbedtls 2.7.0 new digest functions were introduced with a "_ret"
suffix to allow the functions to return an error message (eg, if the
underlying hardware acceleration failed). These new functions must be used
instead of the old ones to prevent deprecation warnings, or link errors for
missing functions, depending on the mbedtls configuration.
This removes the need for a separate axtls build stage, and builds all
axtls object files along with other code. This simplifies and cleans up
the build process, automatically builds axtls when needed, and puts the
axtls object files in the correct $(BUILD) location.
The MicroPython axtls configuration file is provided in
extmod/axtls-include/config.h
The underlying socket can handling polling, and any other transparent ioctl
requests. Note that CPython handles the case of polling an ssl object by
polling the file descriptor of the underlying socket file, and that
behaviour is emulated here.
Otherwise they may be called on a socket that no longer exists.
For example, if the GC calls the finaliser on the socket and then reuses
its heap memory, the "callback" entry of the old socket may contain invalid
data. If lwIP then calls the TCP callback the code may try to call the
user callback object which is now invalid. The lwIP callbacks must be
deregistered during the closing of the socket, before all the pcb pointers
are set to NULL.
This feature is controlled at compile time by MICROPY_PY_URE_SUB, disabled
by default.
Thanks to @dmazzella for the original patch for this feature; see #3770.
This feature is controlled at compile time by
MICROPY_PY_URE_MATCH_SPAN_START_END, disabled by default.
Thanks to @dmazzella for the original patch for this feature; see #3770.
This feature is controlled at compile time by MICROPY_PY_URE_MATCH_GROUPS,
disabled by default.
Thanks to @dmazzella for the original patch for this feature; see #3770.
This will allow implementations other than axTLS.
This commit includes additions of checks and clarifications of exceptions
related to user input.
To make the interface cleaner, I've disallowed switching from encrypt to
decrypt in the same object, as this is not always possible with other
crypto libraries (not all libraries have AES_convert_key like axTLS).
Allow including crypto consts based on compilation settings. Disabled by
default to reduce code size; if one wants extra code readability, can
enable them.
The API follows guidelines of https://www.python.org/dev/peps/pep-0272/,
but is optimized for code size, with the idea that full PEP 0272
compatibility can be added with a simple Python wrapper mode.
The naming of the module follows (u)hashlib pattern.
At the bare minimum, this module is expected to provide:
* AES128, ECB (i.e. "null") mode, encrypt only
Implementation in this commit is based on axTLS routines, and implements
following:
* AES 128 and 256
* ECB and CBC modes
* encrypt and decrypt
With this patch objects are only checked that they have the stream protocol
at the start of their use as a stream, and afterwards the efficient
mp_get_stream() helper is used to extract the stream protocol C methods.
This patch changes dupterm to call the native C stream methods on the
connected stream objects, instead of calling the Python readinto/write
methods. This is much more efficient for native stream objects like UART
and webrepl and doesn't require allocating a special dupterm array.
This change is a minor breaking change from the user's perspective because
dupterm no longer accepts pure user stream objects to duplicate on. But
with the recent addition of uio.IOBase it is possible to still create such
classes just by inheriting from uio.IOBase, for example:
import uio, uos
class MyStream(uio.IOBase):
def write(self, buf):
# existing write implementation
def readinto(self, buf):
# existing readinto implementation
uos.dupterm(MyStream())
Via the config value MICROPY_PY_UHASHLIB_SHA256. Default to enabled to
keep backwards compatibility.
Also add default value for the sha1 class, to at least document its
existence.
For consistency with other modules, and to help avoid clashes with the
actual underlying functions that do the hashing (eg
crypto-algorithms/sha256.c:sha256_update).
Following other C-level protocols, this VFS protocol is added to help
abstract away implementation details of the underlying VFS in an efficient
way. As a starting point, the import_stat function is put into this
protocol so that the VFS sub-system does not need to know about every VFS
implementation in order to do an efficient stat for importing files.
In the future it might be worth adding other functions to this protocol.
This VFS component allows to mount a host POSIX filesystem within the uPy
VFS sub-system. All traditional POSIX file access then goes through the
VFS, allowing to sandbox a uPy process to a certain sub-dir of the host
system, as well as mount other filesystem types alongside the host
filesystem.
If mbedtls_ctr_drbg_seed() is available in the mbedtls bulid then so should
be mbedtls_entropy_func(). Then it's up to the port to configure a valid
entropy source, eg via MBEDTLS_ENTROPY_HARDWARE_ALT.
Otherwise the "sock" member may have an undefined value if wrap_socket
fails with an exception and exits early, and then if the finaliser runs it
will try to close an invalid stream object.
Fixes issue #3828.
This matches CPython behaviour on Linux: a socket that is new and not
listening or connected is considered "hung up".
Thanks to @rkojedzinszky for the initial patch, PR #3457.
The order of function calls in an arithmetic expression is undefined and so
they must be written out as sequential statements.
Thanks to @dv-extrarius for reporting this issue, see issue #3690.
The 2nd and 3rd args of the ternary operator are treated like they are in
the same expression and must have similar types. void is not compatible
with int so that's why the compiler is complaining.
This patch moves the implementation of stream closure from a dedicated
method to the ioctl of the stream protocol, for each type that implements
closing. The benefits of this are:
1. Rounds out the stream ioctl function, which already includes flush,
seek and poll (among other things).
2. Makes calling mp_stream_close() on an object slightly more efficient
because it now no longer needs to lookup the close method and call it,
rather it just delegates straight to the ioctl function (if it exists).
3. Reduces code size and allows future types that implement the stream
protocol to be smaller because they don't need a dedicated close method.
Code size reduction is around 200 bytes smaller for x86 archs and around
30 bytes smaller for the bare-metal archs.
This patch takes the software SPI implementation from extmod/machine_spi.c
and moves it to a dedicated file in drivers/bus/softspi.c. This allows the
SPI driver to be used independently of the uPy runtime, making it a more
general component.
This patch eliminates heap allocation in the VFS FAT disk IO layer, when
calling the underlying readblocks/writeblocks methods. The bytearray
object that is passed to these methods is now allocated on the C stack
rather than the heap (it's only 4 words big).
This means that these methods should not retain a pointer to the buffer
object that is passed in, but this was already a restriction because the
original heap-allocated bytearray had its buffer passed by reference.
This patch just moves the definition of the wrapper object fat_vfs_open_obj
to the location of the definition of its function, which matches how it's
done in most other places in the code base.
The fat_vfs_ilistdir2() function was only used by fat_vfs_ilistdir_func()
so moving the former into the same file as the latter allows it to be
placed directly into the latter function, thus saving code size.
CPython doesn't allow SEEK_CUR with non-zero offset for files in text mode,
and uPy inherited this behaviour for both text and binary files. It makes
sense to provide full support for SEEK_CUR of binary-mode files in uPy, and
to do this in a minimal way means also allowing to use SEEK_CUR with
non-zero offsets on text-mode files. That seems to be a fair compromise.
Dramatically improves TCP sending throughput because without an explicit
call to tcp_output() the data is only sent to the lower layers via the
lwIP slow timer which (by default) ticks every 500ms.
Before this patch MP_BINARY_OP_IN had two meanings: coming from bytecode it
meant that the args needed to be swapped, but coming from within the
runtime meant that the args were already in the correct order. This lead
to some confusion in the code and comments stating how args were reversed.
It also lead to 2 bugs: 1) containment for a subclass of a native type
didn't work; 2) the expression "{True} in True" would illegally succeed and
return True. In both of these cases it was because the args to
MP_BINARY_OP_IN ended up being reversed twice.
To fix these things this patch introduces MP_BINARY_OP_CONTAINS which
corresponds exactly to the __contains__ special method, and this is the
operator that built-in types should implement. MP_BINARY_OP_IN is now only
emitted by the compiler and is converted to MP_BINARY_OP_CONTAINS by
swapping the arguments.
It's possible to use the methods (eg ilistdir) of a VFS FatFS object
without it being mounted in the VFS itself. This previously worked but
only because FatFS was "mounting" the filesystem automatically when any
function (eg f_opendir) was called. But it didn't work for ports that used
synchronisation objects (_FS_REENTRANT) because they are only initialised
via a call to f_mount. So, call f_mount explicitly when creating a new
FatFS object so that everything is set up correctly. Then also provide a
finaliser to do the f_umount call, but only if synchronisation objects are
enabled (since otherwise the f_umount call does nothing).
This patch simplifies the str creation API to favour the common case of
creating a str object that is not forced to be interned. To force
interning of a new str the new mp_obj_new_str_via_qstr function is added,
and should only be used if warranted.
Apart from simplifying the mp_obj_new_str function (and making it have the
same signature as mp_obj_new_bytes), this patch also reduces code size by a
bit (-16 bytes for bare-arm and roughly -40 bytes on the bare-metal archs).
The SHA1 hashing functionality is provided via the "axtls" library's
implementation, and hence is unavailable when the "axtls" library is not being
used. This change provides the same SHA1 hashing functionality when using the
"mbedtls" library by using its implementation instead.
If SSL_EAGAIN is returned (which is a feature of MicroPython's axTLS fork),
return EAGAIN.
Original axTLS returns SSL_OK both when there's no data to return to user
yet and when the underlying stream returns EAGAIN. That's not distinctive
enough, for example, original module code works well for blocking stream,
but will infinite-loop for non-blocking socket with EAGAIN. But if we fix
non-blocking case, blocking calls to .read() will return few None's initially
(while axTLS progresses thru handshake).
Using SSL_EAGAIN allows to fix non-blocking case without regressing the
blocking one.
Note that this only handles case of non-blocking reads of application data.
Initial handshake and writes still don't support non-blocking mode and must
be done in the blocking way.
Per the comment found here
https://github.com/micropython/micropython-esp32/issues/209#issuecomment-339855157,
this patch adds finaliser code to prevent memory leaks from ussl objects,
which is especially useful when memory for a ussl context is allocated
outside the uPy heap. This patch is in-line with the finaliser code found
in many modsocket implementations for various ports.
This feature is configured via MICROPY_PY_USSL_FINALISER and is disabled by
default because there may be issues using it when the ussl state *is*
allocated on the uPy heap, rather than externally.
VLAs can be expensive on stack usage due to stack alignment requirements,
and also the fact that extra local variables are needed to track the
dynamic size of the stack. So using fixed-size arrays when possible can
help to reduce code size and stack usage.
In this particular case, the maximum value of n_args in the VLA is 2 and so
it's more efficient to just allocate this array with a fixed size. This
reduces code size by around 30 bytes on Thumb2 and Xtensa archs. It also
reduces total stack usage of the function: on Thumb2 the usage with VLA is
between 40 and 48 bytes, which is reduced to 32; on Xtensa, VLA usage is
between 64 and 80 bytes, reduced to 32; on x86-64 it's at least 88 bytes
reduced to 80.
Without this the board will crash when deactivating a stream that doesn't
have a close() method (eg UART) or that raises an exception within the
method (eg user-defined function).
The uos.dupterm() signature and behaviour is updated to reflect the latest
enhancements in the docs. It has minor backwards incompatibility in that
it no longer accepts zero arguments.
The dupterm_rx helper function is moved from esp8266 to extmod and
generalised to support multiple dupterm slots.
A port can specify multiple slots by defining the MICROPY_PY_OS_DUPTERM
config macro to an integer, being the number of slots it wants to have;
0 means to disable the dupterm feature altogether.
The unix and esp8266 ports are updated to work with the new interface and
are otherwise unchanged with respect to functionality.
Header files that are considered internal to the py core and should not
normally be included directly are:
py/nlr.h - internal nlr configuration and declarations
py/bc0.h - contains bytecode macro definitions
py/runtime0.h - contains basic runtime enums
Instead, the top-level header files to include are one of:
py/obj.h - includes runtime0.h and defines everything to use the
mp_obj_t type
py/runtime.h - includes mpstate.h and hence nlr.h, obj.h, runtime0.h,
and defines everything to use the general runtime support functions
Additional, specific headers (eg py/objlist.h) can be included if needed.
Allow literal minus in char classes to be in trailing position, e.g. [a-c-].
(Previously, minus was allowed only at the start.)
This increases ARM Thumb2 code size by 8 bytes.
This patch also removes the empty type "pinbase_type" (which crashes if
accessed) and uses "machine_pinbase_type" instead as the type of the
PinBase singleton.
With MBEDTLS_DEBUG_C disabled the function mbedtls_debug_set_threshold()
doesn't exist. There's also no need to call mbedtls_ssl_conf_dbg() so a
few bytes can be saved on disabling that and not needing the mbedtls_debug
callback.
The unary-op/binary-op enums are already defined, and there are no
arithmetic tricks used with these types, so it makes sense to use the
correct enum type for arguments that take these values. It also reduces
code size quite a bit for nan-boxing builds.
This implementation ignores invalid characters in the input. This allows
it to decode the output of b2a_base64, and also mimics the behavior of
CPython.