If a finaliser raises an exception then it must not propagate through the
GC sweep function. This patch protects against such a thing by running
finaliser code via the mp_call_function_1_protected call.
This patch also adds scheduler lock/unlock calls around the finaliser
execution to further protect against any possible reentrancy issues: the
memory manager is already locked when doing a collection, but we also don't
want to allow any scheduled code to run, KeyboardInterrupts to interupt the
code, nor threads to switch.
The common cases for inheritance are 0 or 1 parent types, for both built-in
types (eg built-in exceptions) as well as user defined types. So it makes
sense to optimise the case of 1 parent type by storing just the type and
not a tuple of 1 value (that value being the single parent type).
This patch makes such an optimisation. Even though there is a bit more
code to handle the two cases (either a single type or a tuple with 2 or
more values) it helps reduce overall code size because it eliminates the
need to create a static tuple to hold single parents (eg for the built-in
exceptions). It also helps reduce RAM usage for user defined types that
only derive from a single parent.
Changes in code size (in bytes) due to this patch:
bare-arm: -16
minimal (x86): -176
unix (x86-64): -320
unix nanbox: -384
stmhal: -64
cc3200: -32
esp8266: -108
This implements the orginal idea is that Signal is a subclass of Pin, and
thus can accept all the same argument as Pin, and additionally, "inverted"
param. On the practical side, it allows to avoid many enclosed parenses for
a typical declararion, e.g. for Zephyr:
Signal(Pin(("GPIO_0", 1))).
Of course, passing a Pin to Signal constructor is still supported and is the
most generic form (e.g. Unix port will only support such form, as it doesn't
have "builtin" Pins), what's introduces here is just practical readability
optimization.
"value" kwarg is treated as applying to a Signal (i.e. accounts for possible
inversion).
This buffer is used to allocate objects temporarily, and such objects
require that their underlying memory be correctly aligned for their data
type. Aligning for mp_obj_t should be sufficient for emergency exceptions,
but in general the memory buffer should aligned to the maximum alignment of
the machine (eg on a 32-bit machine with mp_obj_t being 4 bytes, a double
may not be correctly aligned).
This patch fixes a bug for certain nan-boxing builds, where mp_obj_t is 8
bytes and must be aligned to 8 bytes (even though the machine is 32 bit).
Changes made are:
- Use the time module in place of the pyb module for delays.
- Use spi.read/spi.write instead of spi.send/spi.receive.
- Drop some non-portable parameters to spi and pin initialization.
Thanks to @deshipu for the original patch.
Internal structure of k_fifo changed between 1.7 and 1.8, so we need
to abstract it away. This adds more functions than currently used, for
future work.