This patch adds full support for unwinding jumps to the native emitter.
This means that return/break/continue can be used in try-except,
try-finally and with statements. For code that doesn't use unwinding jumps
there is almost no overhead added to the generated code.
The native emitter keeps the current exception in a slot in its C stack
(instead of on its Python value stack), so when it catches an exception it
must explicitly clear that slot so the same exception is not reraised later
on.
Back in 8047340d75 basic support was added in
the VM to handle return statements within a finally block. But it didn't
cover all cases, in particular when some finally's were active and others
inactive when the "return" was executed.
This patch adds further support for return-within-finally by correctly
managing the currently_in_except_block flag, and should fix all cases. The
main point is that finally handlers remain on the exception stack even if
they are active (currently being executed), and the unwind return code
should only execute those finally's which are inactive.
New tests are added for the cases which now pass.
PEP479 (see https://www.python.org/dev/peps/pep-0479/) prohibited raising
StopIteration from within a generator (it is turned into a RuntimeError).
This behaviour was introduced in Python 3.5 and in 3.7 was made compulsory.
Until uPy implements PEP479, this patch adds .py.exp files for the relevant
tests so they can be run under Python 3.7.
In Python 3.7 the behaviour of repr() of an exception with one argument
changed: it no longer prints a trailing comma in the argument list. See
https://bugs.python.org/issue30399
This patch modifies tests that rely on this behaviour to not rely on it.
And the python34.py test is updated to include a test for this behaviour
with a .exp file.
Prior to this patch, native code would use a full nlr_buf_t for each
exception handler (try-except, try-finally, with). For nested exception
handlers this would use a lot of C stack and be rather inefficient.
This patch changes how exceptions are handled in native code by setting up
only a single nlr_buf_t context for the entire function, and then manages a
state machine (using the PC) to work out which exception handler to run
when an exception is raised by an nlr_jump. This keeps the C stack usage
at a constant level regardless of the depth of Python exception blocks.
The patch also fixes an existing bug when local variables are written to
within an exception handler, then their value was incorrectly restored if
an exception was raised (since the nlr_jump would restore register values,
back to the point of the nlr_push).
And it also gets nested try-finally+with working with the viper emitter.
Broadly speaking, efficiency of executing native code that doesn't use
any exception blocks is unchanged, and emitted code size is only slightly
increased for such function. C stack usage of all native functions is
either equal or less than before. Emitted code size for native functions
that use exception blocks is increased by roughly 10% (due in part to
fixing of above-mentioned bugs).
But, most importantly, this patch allows to implement more Python features
in native code, like unwind jumps and yielding from within nested exception
blocks.
These POSIX wrappers are assumed to be passed a concrete stream object so
it is more efficient (eg on nan-boxing builds) to pass in the pointer
rather than mp_obj_t, because then the users of these functions only need
to store a void* (and mp_obj_t may be wider than a pointer). And things
would be further improved if the stream protocol functions eventually took
a pointer as their first argument (instead of an mp_obj_t).
This patch is a step to getting ussl/axtls compiling on nan-boxing builds.
See issue #3085.
mpy-cross is a host, not target binary. It should not be build with the
target compiler, compiler options and other settings. For example,
If someone currently tries to build from pristine checkout the unix port
with the following command:
make CROSS_COMPILE=arm-linux-gnueabihf-
then mpy-cross will be built with arm-linux-gnueabihf-gcc and of course
won't run on the host, leading to overall build failure.
This situation was worked around for some options in 1d8c3f4cff, so add
MICROPY_FORCE_32BIT and CROSS_COMPILE to that set too.
The aim here is to have spi.c contain the low-level SPI driver which is
independent (not fully but close) of MicroPython objects and methods, and
the higher-level bindings are separated out to pyb_spi.c and machine_spi.c.
Among other things, this requires putting bootloader object files in to
their relevant .a archive, so that they can be correctly referenced by the
ESP IDF's linker script.
Otherwise there is the possibility that n_free starts out non-zero from the
previous iteration, which may have found a few (but not enough) free blocks
at the end of the heap. If this is the case, and if the very first blocks
that are scanned the second time around (starting at
gc_last_free_atb_index) are found to give enough memory (including the
blocks at the end of the heap from the previous iteration that left n_free
non-zero) then memory will be allocated starting before the location that
gc_last_free_atb_index points to, most likely leading to corruption.
This serious bug did not manifest itself in the past because a gc_collect
always resets gc_last_free_atb_index to point to the start of the GC heap,
and the first block there is almost always allocated to a long-lived
object (eg entries from sys.path, or mounted filesystem objects), which
means that n_free would be reset at the start of the search loop.
But with threading enabled with the GIL disabled it is possible to trigger
the bug via the following sequence of events:
1. Thread A runs gc_alloc, fails to find enough memory, and has a non-zero
n_free at the end of the search.
2. Thread A calls gc_collect and frees a bunch of blocks on the GC heap.
3. Just after gc_collect finishes in thread A, thread B takes gc_mutex and
does an allocation, moving gc_last_free_atb_index to point to the
interior of the heap, to a place where there is most likely a run of
available blocks.
4. Thread A regains gc_mutex and does its second search for free memory,
starting with a non-zero n_free. Since it's likely that the first block
it searches is available it will allocate memory which overlaps with the
memory before gc_last_free_atb_index.
- Allow configuration by a board of autorefresh number and burst length.
- Increase MPU region size to 8MiB.
- Make SDRAM region cacheable and executable.
"coverage" build uses different BUILD directory comparing to the normal
build. Previously, any build picked up libaxtls.a from normal build's
directory, but that was fixed recently. So, for each build, we must
build axtls explicitly.
This fixes Travis build in particular.
Use overrideable properties instead of hardcoding the use of the
default cl executable used by msvc toolsets. This allows using
arbitrary compiler commands for qstr header generation.
The CLToolExe and CLToolPath properties are used because they are,
even though absent from any official documentation, the de-facto
standard as used by the msvc toolsets themselves.
Without this patch, on 64-bit architectures the "1 << (small_int_bits - 1)"
is computed using only 32-bit values (since small_int_bits is a uint8_t)
and so will overflow (and give the wrong result) if small_int_bits is
larger than 32.
Requesting a baudrate of X should never configure the peripheral to have a
baudrate greater than X because connected hardware may not be able to
handle higher speeds. This patch makes sure to round the prescaler up so
that the actual baudrate is rounded down.
Input files like basics/string_format.py and float/string_format.py have
the same basename so using that name for writing the output (.exp and .out
files) when both tests fail, results in the output of the first one being
overwritten.
Avoid this by using unique names for the output, replacing path characters
with underscores.
There is no need to have three copies of the exception object on the top of
the native value stack. Instead, the values on the stack should be the
first two items in an nlr_buf_t: the prev pointer and the ret_val pointer.
This is all that is needed and is what the rest of the native emitter
expects is on the stack.
This patch is essentially an optimisation. Behaviour is unchanged,
although the stack layout for native exception handling now makes more
sense.
A native function allocates space on its C stack for mp_code_state_t,
followed by its Python stack, then its locals. This patch makes sure that
the native function actually starts at the start of its Python stack,
rather than at the start of mp_code_state_t (which didn't lead to any
issues so far because the mp_code_state_t is unused after the native
function sets itself up).