This fixes commit a99f9427420d("'/' and '\' are also acceptable ends of the path now") which broke mkdir.
The problem is where the directory name is a single letter like this:
>>> os.mkdir('a')
>>> os.mkdir('a/b')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OSError: [Errno 17] File exists
>>> os.mkdir('a/bb')
>>>
I wasn't smart enough to fix this in the oofatfs library, so I did it in the os shared module by
creating a path lookup function for the os methods that only deals with directories. I reverted
the library change introduced by the aforementioned commit.
This means that os.stat and os.rename can't handle trailing slashes. This is to avoid allowing
filenames with trailing slashes to pass through. In order to handle trailing slashes for these
it would be necessary to check if it really is a directory before stripping. I didn't do this
since the original issue was to make os.chdir tolerate trailing slashes.
There's an open MicroPython issue #2929 wrt. trailing slashes and mkdir.
This started while adding USB MIDI support (and descriptor support is
in this change.) When seeing that I'd have to implement the MIDI class
logic twice, once for atmel-samd and once for nrf, I decided to refactor
the USB stack so its shared across ports. This has led to a number of
changes that remove items from the ports folder and move them into
supervisor.
Furthermore, we had external SPI flash support for nrf pending so I
factored out the connection between the usb stack and the flash API as
well. This PR also includes the QSPI support for nRF.
This was the last class from ubluepy and so that module is now gone.
The Device class offers both Peripheral and Central functionality.
See the inline docs for more info.
Also, renamed Sprite's palette to pixel_shader so it can be
anything that produces colors based on values (including color values).
Added a ColorConverter that converts RGB888 (found in bitmaps) to
RGB565 for the display.
Fixes#1182
It's designed to minimize RAM footprint by using Sprites to
represent objects on the screen. The object model also facilitates
partial screen updating which reduces the bandwidth needed to display.
This is all handled in C. Python simply manipulates the objects with
the ability to synchronize to frame timing.