When calling ppp.active(False) we could get a crash due to immediately
returning after asking FreeRTOS to delete the current task.
This commit adds a simple blocking loop, the same as used in all other
places where we call vTaskDelete(NULL).
Signed-off-by: Daniël van de Giessen <daniel@dvdgiessen.nl>
This implements support for SO_BINDTODEVICE, which allows telling a socket
to use a specific interface instead of lwIP automatically selecting one.
This allows devices that have multiple connections (for example cellular
over PPP in addition to WLAN) to explicitly choose which data is send over
which connection, which may have different reliability and or (mobile data)
costs associated with using them.
The used lwIP network stack already has support for this, so all that was
needed was to expose this functionality in MicroPython. This commit
exposes a new constant SO_BINDTODEVICE which can be set as an socket
option. As a value it expects the name of the interface to bind to. These
names can be retrieved using `.config('ifname')` implemented on each
interface type (including adding in this commit a `.config()` method to
PPP, which it didn't have before), which returns a string with the
interface name:
>>> import machine
>>> import network
>>> network.WLAN(network.AP_IF).config('ifname')
'lo0'
>>> wlan = network.WLAN(network.AP_IF)
>>> wlan.active(True) and wlan.config('ifname')
'ap1'
>>> wlan = network.WLAN(network.STA_IF)
>>> wlan.active(True) and wlan.config('ifname')
'st1'
>>> ppp = network.PPP(machine.UART(0))
>>> ppp.active(True) and ppp.config('ifname')
'pp1'
>>> ppp = network.PPP(machine.UART(0))
>>> ppp.active(True) and ppp.config('ifname')
'pp2'
>>> ppp = network.PPP(machine.UART(0))
>>> ppp.active(True) and ppp.config('ifname')
'pp3'
Note that lo0 seems to be returned by lwIP if the interface is not yet
active. The method can also return None in the case of PPP where the
entire lwIP interface doesn't yet exist before being activated. Currently
no effort is made to unify those cases; it is expected that whatever we
receive from lwIP is valid.
When the socket option is set, this forces using a specific device:
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_BINDTODEVICE, 'st1')
setsockopt will throw (OSError: [Errno 19] ENODEV) if the specified
interface does not exist.
Tested with LAN, WLAN, and PPP; can specify which interface should be used
and when testing with, for example, HTTP requests to ifconfig.co the
returned IP address confirms a specific interface was used.
Signed-off-by: Daniël van de Giessen <daniel@dvdgiessen.nl>
This commit updates the esp32 port to work exclusively with ESP-IDF v5.
IDF v5 is needed for some of the newer ESP32 SoCs to work, and it also
cleans up a lot of the inconsistencies between existing SoCs (eg S2, S3,
and C3).
Support for IDF v4 is dropped because it's a lot of effort to maintain both
versions at the same time.
The following components have been verified to work on the various SoCs:
ESP32 ESP32-S2 ESP32-S3 ESP32-C3
build pass pass pass pass
SPIRAM pass pass pass N/A
REPL (UART) pass pass pass pass
REPL (USB) N/A pass pass N/A
filesystem pass pass pass pass
GPIO pass pass pass pass
SPI pass pass pass pass
I2C pass pass pass pass
PWM pass pass pass pass
ADC pass pass pass pass
WiFi STA pass pass pass pass
WiFi AP pass pass pass pass
BLE pass N/A pass pass
ETH pass -- -- --
PPP pass pass pass --
sockets pass pass pass pass
SSL pass ENOMEM pass pass
RMT pass pass pass pass
NeoPixel pass pass pass pass
I2S pass pass pass N/A
ESPNow pass pass pass pass
ULP-FSM pass pass pass N/A
SDCard pass N/A N/A pass
WDT pass pass pass pass
Signed-off-by: Damien George <damien@micropython.org>
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Rather than duplicating the implementation of `network`, this allows ESP32
to use the shared one in extmod. In particular this gains access to
network.hostname and network.country.
Set default hostnames for various ESP32 boards.
Other than adding these two methods and the change to the default hostname,
there is no other user-visible change.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Instead of being an explicit field, it's now a slot like all the other
methods.
This is a marginal code size improvement because most types have a make_new
(100/138 on PYBV11), however it improves consistency in how types are
declared, removing the special case for make_new.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
PPP support was disabled in 96008ff59a -
marked as "unsupported" due to an early IDF v4 release. With the currently
supported IDF v4.x version - 4c81978a - it appears to be working just fine.
This commit adds support for a second supported hash (currently set to the
4.0-beta1 tag). When this hash is detected, the relevant changes are
applied.
This allows to start using v4 features (e.g. BLE with Nimble), and also
start doing testing, while still supporting the original, stable, v3.3 IDF.
Note: this feature is experimental, not well tested, and network.LAN and
network.PPP are currently unsupported.
This commit adds the connect() method to the PPP interface and requires
that connect() be called after active(1). This is a breaking change for
the PPP API.
With the connect() method it's now possible to pass in authentication
information for PAP/CHAP, eg:
ppp.active(1)
ppp.connect(authmode=ppp.AUTH_PAP, username="user", "password="password")
If no authentication is needed simply call connect() without any
parameters. This will get the original behaviour of calling active(1).
On this port the GIL is enabled and everything works under the assumption
of the GIL, ie that a given task has exclusive access to the uPy state, and
any ISRs interrupt the current task and therefore the ISR inherits
exclusive access to the uPy state for the duration of its execution.
If the MicroPython tasks are not pinned to a specific core then an ISR may
be executed on a different core to the task, making it possible for the
main task and an ISR to execute in parallel, breaking the assumption of the
GIL.
The easiest and safest fix for this is to pin all MicroPython related code
to the same CPU core, as done by this patch. Then any ISR that accesses
MicroPython state must be registered from a MicroPython task, to ensure it
is invoked on the same core.
See issue #4895.
Without this you often don't get any DNS server from your network provider.
Additionally, setting your own DNS _does not work_ without this option set
(which could be a bug in the PPP stack).
This also fixes deleting the PPP task, since eTaskGetState() never returns
eDeleted.
A limitation with this patch: once the PPP is deactivated (ppp.active(0))
it cannot be used again. A new PPP instance must be created instead.
Configuration for the build is now specified using sdkconfig rather than
sdkconfig.h, which allows for much easier configuration with defaults from
the ESP IDF automatically applied. sdkconfig.h is generated using the new
ESP IDF kconfig_new tool written in Python. Custom configuration for a
particular ESP32 board can be specified via the make variable SDKCONFIG.
The esp32.common.ld file is also now generated using the standard ESP IDF
ldgen.py tool.