The code_state.old_globals variable is there to save the globals state so
should be used for this purpose, to avoid the need for additional local
variables on the C stack.
Without this, if GC threshold is hit and there is not enough memory left to
satisfy the request, gc_collect() will run a second time and the search for
memory will happen again and will fail again.
Thanks to @adritium for pointing out this issue, see #3786.
Under ubsan, when evaluating hash(-0.) the following diagnostic occurs:
../../py/objfloat.c:102:15: runtime error: negation of
-9223372036854775808 cannot be represented in type 'mp_int_t' (aka
'long'); cast to an unsigned type to negate this value to itself
So do just that, to tell the compiler that we want to perform this
operation using modulo arithmetic rules.
Before this, ubsan would detect a problem when executing
hash(006699999999999999999999999999999999999999999999999999999999999999999999)
../../py/mpz.c:1539:20: runtime error: left shift of 1067371580458 by
32 places cannot be represented in type 'mp_int_t' (aka 'long')
When the overflow does occur it now happens as defined by the rules of
unsigned arithmetic.
When computing e.g. hash(0.4e3) with ubsan enabled, a diagnostic like the
following would occur:
../../py/objfloat.c:91:30: runtime error: shift exponent 44 is too
large for 32-bit type 'int'
By casting constant "1" to the right type the intended value is preserved.
Fuzz testing combined with the undefined behavior sanitizer found that
parsing unreasonable float literals like 1e+9999999999999 resulted in
undefined behavior due to overflow in signed integer arithmetic, and a
wrong result being returned.
There is no need to use the mp_int_t type which may be 64-bits wide, there
is enough bit-width in a normal int to parse reasonable exponents. Using
int helps to reduce code size for 64-bit ports, especially nan-boxing
builds. (Similarly for the "dig" variable which is now an unsigned int.)
Calling memset(NULL, value, 0) is not standards compliant so we must add an
explicit check that emit->label_offsets is indeed not NULL before calling
memset (this pointer will be NULL on the first pass of the parse tree and
it's more logical / safer to check this pointer rather than check that the
pass is not the first one).
Code sanitizers will warn if NULL is passed as the first value to memset,
and compilers may optimise the code based on the knowledge that any pointer
passed to memset is guaranteed not to be NULL.
Before this patch:
>>> print(')
... ')
Traceback (most recent call last):
File "<stdin>", line 1
SyntaxError: invalid syntax
After this patch:
>>> print(')
Traceback (most recent call last):
File "<stdin>", line 1
SyntaxError: invalid syntax
This matches CPython and prevents getting stuck in REPL continuation when a
1-quote is unmatched.
Before this patch, when using the switch statement for dispatch in the VM
(not computed goto) a pending exception check was done after each opcode.
This is not necessary and this patch makes the pending exception check only
happen when explicitly requested by certain opcodes, like jump. This
improves performance of the VM by about 2.5% when using the switch.
This patch fixes the macro so you can pass any name in, and the macro will
make more sense if you're reading it on its own. It worked previously
because n_state is always passed in as n_state_out_var.
gcc 8.0 supports the naked attribute for x86 systems so it can now be used
here. And in fact it is necessary to use this for nlr_push because gcc 8.0
no longer generates a prelude for this function (even without the naked
attribute).
This patch moves the start of the root pointer section in mp_state_ctx_t
so that it skips entries that are not pointers and don't need scanning.
Previously, the start of the root pointer section was at the very beginning
of the mp_state_ctx_t struct (which is the beginning of mp_state_thread_t).
This was the original assembler version of the NLR code was hard-coded to
have the nlr_top pointer at the start of this state structure. But now
that the NLR code is partially written in C there is no longer this
restriction on the location of nlr_top (and a comment to this effect has
been removed in this patch).
So now the root pointer section starts part way through the
mp_state_thread_t structure, after the entries which are not root pointers.
This patch also moves the non-pointer entries for MICROPY_ENABLE_SCHEDULER
outside the root pointer section.
Moving non-pointer entries out of the root pointer section helps to make
the GC more precise and should help to prevent some cases of collectable
garbage being kept.
This patch also has a measurable improvement in performance of the
pystone.py benchmark: on unix x86-64 and stm32 there was an improvement of
roughly 0.6% (tested with both gcc 7.3 and gcc 8.1).
This patch changes 2 things in the endianness detection:
1. Don't assume that __BYTE_ORDER__ not being __ORDER_LITTLE_ENDIAN__ means
that the machine is big endian, so add an explicit check that this macro
is indeed __ORDER_BIG_ENDIAN__ (same with __BYTE_ORDER, __LITTLE_ENDIAN
and __BIG_ENDIAN). A machine could have PDP endianness.
2. Remove the checks which base their autodetection decision on whether any
little or big endian macros are defined (eg __LITTLE_ENDIAN__ or
__BIG_ENDIAN__). Just because a system defines these does not mean it
has that endianness.
See issue #3760.
For cases where size_t is smaller than mp_int_t (eg nan-boxing builds) the
difference between two size_t's is not sign extended into mp_int_t and so
the result is never negative. This patch fixes this bug by using ssize_t
for the type of the result.
This gives dir() better behaviour when listing the attributes of a user
type that defines __getattr__: it will now not list those attributes for
which __getattr__ raises AttributeError (meaning the attribute is not
supported by the object).
This patch fixes the possibility of a crash of the REPL when tab-completing
an object which raises an exception when its attributes are accessed.
See issue #3729.
This new helper function acts like mp_load_method_maybe but is wrapped in
an NLR handler so it can catch exceptions. It prevents AttributeError from
propagating out, and optionally all other exceptions. This helper can be
used to fully implement hasattr (see follow-up commit), and also for cases
where mp_load_method_maybe is used but it must now raise an exception.
the py/makeversionhdr.py script was looking for `conf.py` in the
`docs/` directory, but this was relocated in 46e7f8e. This is used by
the fallback `get_version_info_from_docs_conf` method, which is only
consulted if `git` is unavailable in the build environment.
Closes#791.
This is a more consistent use of errno codes. For example, it may be that
a stream returns MP_EAGAIN but the mp_is_nonblocking_error() macro doesn't
catch this value because it checks for EAGAIN instead (which may have a
different value than MP_EAGAIN when MICROPY_USE_INTERNAL_ERRNO is enabled).
Most modern systems have EWOULDBLOCK aliased to EAGAIN, ie they have the
same value. But some systems use different values for these errnos and if
a uPy port is using the system errno values (ie not the internal uPy
values) then it's important to be able to distinguish EWOULDBLOCK from
EAGAIN. Eg if a system call returned EWOULDBLOCK it must be possible to
check for this return value, and this patch makes this now possible.