This function was implemented as an experiment, and was enabled only in
unix port. To remind, it allows to access arbitrary files frozen as
source modules (vs bytecode).
However, further experimentation showed that the same functionality can
be implemented with frozen bytecode. The process requires more steps, but
with suitable toolset it doesn't matter patch. This process is:
1. Convert binary files into "Python resource module" with
tools/mpy_bin2res.py.
2. Freeze as the bytecode.
3. Use micropython-lib's pkg_resources.resource_stream() to access it.
In other words, the extra step is using tools/mpy_bin2res.py (because
there would be wrapper for uio.resource_stream() anyway).
Going frozen bytecode route allows more flexibility, and same/additional
efficiency:
1. Frozen source support can be disabled altogether for additional code
savings.
2. Resources could be also accessed as a buffer, not just as a stream.
There're few caveats too:
1. It wasn't actually profiled the overhead of storing a resource in
"Python resource module" vs storing it directly, but it's assumed that
overhead is small.
2. The "efficiency" claim above applies to the case when resource
file is frozen as the bytecode. If it's not, it actually will take a
lot of RAM on loading. But in this case, the resource file should not
be used (i.e. generated) in the first place, and micropython-lib's
pkg_resources.resource_stream() implementation has the appropriate
fallback to read the raw files instead. This still poses some distribution
issues, e.g. to deployable to baremetal ports (which almost certainly
would require freezeing as the bytecode), a distribution package should
include the resource module. But for non-freezing deployment, presense
of resource module will lead to memory inefficiency.
All the discussion above reminds why uio.resource_stream() was implemented
in the first place - to address some of the issues above. However, since
then, frozen bytecode approach seems to prevail, so, while there're still
some issues to address with it, this change is being made.
This change saves 488 bytes for the unix x86_64 port.
The SHA1 hashing functionality is provided via the "axtls" library's
implementation, and hence is unavailable when the "axtls" library is not being
used. This change provides the same SHA1 hashing functionality when using the
"mbedtls" library by using its implementation instead.
With inplace methods now disabled by default, it makes sense to enable
reverse methods, as they allow for more useful features, e.g. allow
for datetime module to implement both 2 * HOUR and HOUR * 2 (where
HOUR is e.g. timedelta object).
This adds a new configuration option to print runtime warnings and errors to
stderr. On Unix, CPython prints warnings and unhandled exceptions to stderr,
so the unix port here is configured to use this option.
The unix port already printed unhandled exceptions on the main thread to
stderr. This patch fixes unhandled exceptions on other threads and warnings
(issue #2838) not printing on stderr.
Additionally, a couple tests needed to be fixed to handle this new behavior.
This is done by also capturing stderr when running tests.
This is to keep the top-level directory clean, to make it clear what is
core and what is a port, and to allow the repository to grow with new ports
in a sustainable way.