Address printed was truncated anyway and in general confusing to outsider.
A line which dumps it is still left in the source, commented, for peculiar
cases when it may be needed (e.g. when running under debugger).
In some compliation enviroments (e.g. mbed online compiler) with
strict standards compliance, <math.h> does not define constants such
as M_PI. Provide fallback definitions of M_E and M_PI where needed.
If an OSError is raised with an integer argument, and that integer
corresponds to an errno, then the string for the errno is used as the
argument to the exception, instead of the integer. Only works if
the uerrno module is enabled.
These are typical consumers of large chunks of memory, so it's useful to
see at least their number (how much memory isn't clearly shown, as the data
for these objects is allocated elsewhere).
Effect measured on esp8266 port:
Before:
>>> pystone_lowmem.main(10000)
Pystone(1.2) time for 10000 passes = 44214 ms
This machine benchmarks at 226 pystones/second
>>> pystone_lowmem.main(10000)
Pystone(1.2) time for 10000 passes = 44246 ms
This machine benchmarks at 226 pystones/second
After:
>>> pystone_lowmem.main(10000)
Pystone(1.2) time for 10000 passes = 44343ms
This machine benchmarks at 225 pystones/second
>>> pystone_lowmem.main(10000)
Pystone(1.2) time for 10000 passes = 44376ms
This machine benchmarks at 225 pystones/second
vstr_null_terminated_str is almost certainly a vstr finalization operation,
so it should add the requested NUL byte, and not try to pre-allocate more.
The previous implementation could actually allocate double of the buffer
size.
Previous to this patch bignum division and modulo would temporarily
modify the RHS argument to the operation (eg x/y would modify y), but on
return the RHS would be restored to its original value. This is not
allowed because arguments to binary operations are const, and in
particular might live in ROM. The modification was to normalise the arg
(and then unnormalise before returning), and this patch makes it so the
normalisation is done on the fly and the arg is now accessed as read-only.
This change doesn't increase the order complexity of the operation, and
actually reduces code size.
When DIG_SIZE=32, a uint32_t is used to store limbs, and no normalisation
is needed because the MSB is already set, then there will be left and
right shifts (in C) by 32 of a 32-bit variable, leading to undefined
behaviour. This patch fixes this bug.
Also do that only for the first word in a line. The idea is that when you
start up interpreter, high chance that you want to do an import. With this
patch, this can be achieved with "i<tab>".
The type is an unsigned 8-bit value, since bytes objects are exactly
that. And it's also sensible for unicode strings to return unsigned
values when accessed in a byte-wise manner (CPython does not allow this).
While just a websocket is enough for handling terminal part of WebREPL,
handling file transfer operations requires demultiplexing and acting
upon, which is encapsulated in _webrepl class provided by this module,
which wraps a websocket object.
The C standard says that left-shifting a signed value (on the LHS of the
operator) is undefined. So we cast to an unsigned integer before the
shift. gcc does not issue a warning about this, but clang does.
- msvc preprocessor output contains full paths with backslashes so the
':' and '\' characters needs to be erased from the paths as well
- use a regex for extraction of filenames from preprocessor output so it
can handle both gcc and msvc preprocessor output, and spaces in paths
(also thanks to a PR from @travnicekivo for part of that regex)
- os.rename will fail on windows if the destination file already exists,
so simply attempt to delete that file first
Qstr auto-generation is now much faster so this optimisation for start-up
time is no longer needed. And passing "-s -S" breaks some things, like
stmhal's "make deploy".
E.g. for stmhal, accumulated preprocessed output may grow large due to
bloated vendor headers, and then reprocessing tens of megabytes on each
build make take couple of seconds on fast hardware (=> potentially dozens
of seconds on slow hardware). So instead, split once after each change,
and only cat repetitively (guaranteed to be fast, as there're thousands
of lines involved at most).
If make -B is run, the rule is run with $? empty. Extract fron all file in
this case. But this gets fragile, really "make clean" should be used instead
with such build complexity.
When there're C files to be (re)compiled, they're all passed first to
preprocessor. QSTR references are extracted from preprocessed output and
split per original C file. Then all available qstr files (including those
generated previously) are catenated together. Only if the resulting content
has changed, the output file is written (causing almost global rebuild
to pick up potentially renumbered qstr's). Otherwise, it's not updated
to not cause spurious rebuilds. Related make rules are split to minimize
amount of commands executed in the interim case (when some C files were
updated, but no qstrs were changed).