When SCR_QSTR contains C++ files they should be preprocessed with the same
compiler flags (CXXFLAGS) as they will be compiled with, to make sure code
scanned for QSTR occurrences is effectively the code used in the rest of
the build. The 'split SCR_QSTR in .c and .cpp files and process each with
different flags' logic isn't trivial to express in a Makefile and the
existing principle for deciding which files to preprocess was already
rather complicated, so the actual preprocessing is moved into
makeqstrdefs.py completely.
When process_file() is passed a preprocessed C++ file for instance it won't
find any lines containing .c files and the last_fname variable remains
None, so handle that gracefully.
If a port provides MICROPY_PY_URANDOM_SEED_INIT_FUNC as a source of
randomness then this will be used when urandom.seed() is called without
an argument (or with None as the argument) to seed the pRNG.
Other related changes in this commit:
- mod_urandom___init__ is changed to call seed() without arguments, instead
of explicitly passing in the result of MICROPY_PY_URANDOM_SEED_INIT_FUNC.
- mod_urandom___init__ will only ever seed the pRNG once (before it could
seed it again if imported by, eg, random and then urandom).
- The Yasmarang state is moved to the BSS for builds where the state is
guaranteed to be initialised on import of the (u)random module.
Signed-off-by: Damien George <damien@micropython.org>
The same seed will only occur if the board is the same, the RTC has the
same time (eg freshly powered up) and the first call to this function (eg
via an "import random") is done at exactly the same time since reset.
Signed-off-by: Damien George <damien@micropython.org>
For seeding, the RNG function of the ESP-IDF is used, which is told to be a
true RNG, at least when WiFi or Bluetooth is enabled. Seeding on import is
as per CPython. To obtain a reproducible sequence of pseudo-random numbers
one must explicitly seed with a known value.
Prior to this commit, the ADC calibration code was never executing because
ADVREGEN bit was set making the CR register always non-zero.
This commit changes the logic so that ADC calibration is always run when
the ADC is disabled and an ADC channel is initialised. It also uses the LL
API functions to do the calibration, to make sure it is done correctly on
each MCU variant.
Signed-off-by: Damien George <damien@micropython.org>
When threading is enabled without the GIL then there can be races between
the threads accessing the globals dict. Avoid this issue by making sure
all globals variables are allocated before starting the threads.
Signed-off-by: Damien George <damien@micropython.org>
Newer GCC versions are able to warn about switch cases that fall
through. This is usually a sign of a forgotten break statement, but in
the few cases where a fall through is intended we annotate it with this
macro to avoid the warning.
Like Clang, GCC warns about this file, but only with -Woverride-init
which is enabled by -Wextra. Disable the warnings for this file just
like we do for Clang to make -Wextra happy.
When compiling with -Wextra which includes -Wmissing-field-initializers
GCC will warn that the defval field of mp_arg_val_t is not initialized.
This is just a warning as it is defined to be zero initialized, but since
it is a union it makes sense to be explicit about which member we're
going to use, so add the explicit initializers and get rid of the
warning.
On x86 chars are signed, but we're comparing a char to '0' + unsigned int,
which is promoted to an unsigned int. Let's promote the char to unsigned
before doing the comparison to avoid weird corner cases.
The function scope_find_or_add_id used to take a scope_kind_t enum and
save it in an uint8_t. Saving an enum in a uint8_t is fine, but
everywhere this function is called it is not actually given a
scope_kind_t but an anonymous enum instead. Let's give this enum a name
and use that as the argument type.
This doesn't change the generated code, but is a C type mismatch that
unfortunately doesn't show up unless you enable -Wenum-conversion.
If the device is not connected over USB CDC to a host then all output to
the CDC (eg initial boot messages) is written to the CDC TX buffer with
wrapping, so that the most recent data is retained when the USB CDC is
eventually connected (eg so the REPL banner is displayed upon connection).
This commit fixes a bug in this behaviour, which was likely introduced in
e4fcd216e0, where the initial data in the CDC
TX buffer is repeated multiple times on first connection of the device to
the host.
Signed-off-by: Damien George <damien@micropython.org>
This is a generally useful feature and because it's part of the object
model it cannot be added at runtime by some loadable Python code, so enable
it on the standard unix build.
The last argument of TUD_CDC_DESCRIPTOR() is the endpoint size (or
wMaxPacketSize), not the CDC RX buffer size (which can be larger than the
endpoint size).
Signed-off-by: Damien George <damien@micropython.org>
When installing WS firmware, the very first GET_STATE can take several
seconds to respond (especially with the larger binaries like
BLE_stack_full).
Allows stm.rfcore_sys_hci to take an optional timeout, defaulting to
SYS_ACK_TIMEOUT_MS (which is 250ms).
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The flash can sometimes be in an already-unlocked state, and attempting to
unlock it again will cause an immediate reset. So make _Flash.unlock()
check FLASH_CR_LOCK to get the current state.
Also fix some magic numbers for FLASH_CR_LOCK AND FLASH_CR_STRT.
The machine.reset() could be removed because it no longer crashes now that
the flash unlock is fixed.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit adds a script that can be run on-device to install FUS and WS
binaries from the filesystem. Instructions for use are provided in
the rfcore_firmware.py file.
The commit also removes unneeded functionality from the existing rfcore.py
debug script (and renames it rfcore_debug.py).
The new functions provide FUS/WS status, version and SYS HCI commands:
- stm.rfcore_status()
- stm.rfcore_fw_version(fw_id)
- stm.rfcore_sys_hci(ogf, ocf, cmd)
Changes are:
- Fix missing IRQ handler when SDMMC2 is used instead of SDMMC1 with H7
MCUs.
- Removed outdated H7 series compatibility macros.
- Defined common IRQ handler macro for F4 series.
It requires mp_hal_time_ns() to be provided by a port. This function
allows very accurate absolute timestamps.
Enabled on unix, windows, stm32, esp8266 and esp32.
Signed-off-by: Damien George <damien@micropython.org>
With a warning that this way of constructing software I2C/SPI is
deprecated. The check and warning will be removed in a future release.
This should help existing code to migrate to the new SoftI2C/SoftSPI types.
Signed-off-by: Damien George <damien@micropython.org>