This commit adds an implementation of machine.Timer backed by the soft
timer mechanism. It allows an arbitrary number of timers with 1ms
resolution, with an associated Python callback. The Python-level API
matches existing ports that have a soft timer, and is used as:
from machine import Timer
t = Timer(freq=10, callback=lambda t:print(t))
...
t = Timer(mode=Timer.ONE_SHOT, period=2000, callback=lambda t:print(t))
...
t.deinit()
This commit adds an implementation of a "software timer" with a 1ms
resolution, using SysTick. It allows unlimited number of concurrent
timers (limited only by memory needed for each timer entry). They can be
one-shot or periodic, and associated with a Python callback.
There is a very small overhead added to the SysTick IRQ, which could be
further optimised in the future, eg by patching SysTick_Handler code
dynamically.
The MP_STATE_THREAD(stack_top) is always available so use it instead of
creating a separate variable. This also allows gc_collect() to be used as
an independent function, without real_main() being called.
When a SPI bus is initialized with a SPI host that is currently in use the
exception msg incorrectly indicates "SPI device already in use". The
mention of "device" in the exception msg is confusing because the error is
about trying to use a SPI host that is already claimed. A better exception
msg is "SPI host already in use".
For consistency with "umachine". Now that weak links are enabled
by default for built-in modules, this should be a no-op, but allows
extension of the bluetooth module by user code.
Also move registration of ubluetooth to objmodule rather than
port-specific.
This commit implements automatic module weak links for all built-in
modules, by searching for "ufoo" in the built-in module list if "foo"
cannot be found. This means that all modules named "ufoo" are always
available as "foo". Also, a port can no longer add any other weak links,
which makes strict the definition of a weak link.
It saves some code size (about 100-200 bytes) on ports that previously had
lots of weak links.
Some changes from the previous behaviour:
- It doesn't intern the non-u module names (eg "foo" is not interned),
which saves code size, but will mean that "import foo" creates a new qstr
(namely "foo") in RAM (unless the importing module is frozen).
- help('modules') no longer lists non-u module names, only the u-variants;
this reduces duplication in the help listing.
Weak links are effectively the same as having a set of symbolic links on
the filesystem that is searched last. So an "import foo" will search
built-in modules first, then all paths in sys.path, then weak links last,
importing "ufoo" if it exists. Thus a file called "foo.py" somewhere in
sys.path will still have precedence over the weak link of "foo" to "ufoo".
See issues: #1740, #4449, #5229, #5241.
When loading a manifest file, e.g. by include(), it will chdir first to the
directory of that manifest. This means that all file operations within a
manifest are relative to that manifest's location.
As a consequence of this, additional environment variables are needed to
find absolute paths, so the following are added: $(MPY_LIB_DIR),
$(PORT_DIR), $(BOARD_DIR). And rename $(MPY) to $(MPY_DIR) to be
consistent.
Existing manifests are updated to match.
Prior to this commit the systick IRQ priority was set at lowest priority on
F0/L0/WB MCUs, because it was left at the default and never configured.
This commit ensures the priority is configured and sets it to the highest
priority.
Remove the 240MHz CPU config option from sdkconfig.base and create a new
sdkconfig.240mhz file for those boards that want to use 240MHz on boot.
The default CPU frequency is now 160MHz (was 240MHz), to align with the ESP
IDF and support more boards (eg those with D2WD chips).
Fixes issue #5169.
This prevents issues with concurrent access to the ringbuf.
MICROPY_BEGIN_ATOMIC_SECTION is only atomic to the same core. We could
address this with a mutex, but it's also not safe to call mp_sched_schedule
across cores.
This avoids a confusing ENOMEM raised from gap_advertise if there is
currently an active connection. This refers to the static connection
buffer pre-allocated by Nimble (nothing to do with MicroPython heap
memory).
This patch add basic building blocks for nrf9P60.
It also includes a secure bootloader which forwards all
possible peripherals that are user selectable to become
non-secure. After configuring Flash, RAM and peripherals
the secure bootloader will jump to the non-secure domain
where MicroPython is placed.
The minimum size of a secure boot has to be a flash
block of 32Kb, hence why the linker scripts are
offsetting the main application this much.
The RAM offset is set to 128K, to allow for later
integration of Nordic Semiconductor's BSD socket
library which reserves the range 0x20010000 - 0x2001FFFF.
Add support for pca10059 with REPL over tinyusb USB CDC.
The board also includes a board specific module that will
recover UICR->REGOUT0 in case this has been erased.
This initial support does not preserve any existing bootloader
on the pca10090 in case this was present, and expects to use all
available flash on the device.
Add nrf-port finyusb driver files. USB CDC can be activated
by board configuration files using the MICROPY_HW_USB_CDC.
Updating BLE driver, Makefile, nrfx-glue and main.c to plug
in the tinyusb stack.
The specific board can be selected with the BOARD makefile variable. This
defaults (if not specified) to BOARD=GENERIC, which is the original default
firmware build. For the 512k target use BOARD=GENERIC_512K.
On other ports (e.g. ESP32) they provide a complete Nimble implementation
(i.e. we don't need to use the code in extmod/nimble). This change
extracts out the bits that we don't need to use in other ports:
- malloc/free/realloc for Nimble memory.
- pendsv poll handler
- depowering the cywbt
Also cleans up the root pointer management.
STM32F0 has PCLK=48MHz and maximum ADC clock is 14MHz so use PCLK/4=12MHz
to stay within spec of the ADC peripheral. In pyb.ADC set common sampling
time to approx 4uS for internal and external sources. In machine.ADC
reduce sample time to approx 1uS for external source, leave internal at
maximum sampling time.
This commit adds the option to use HSE or MSI system clock, and LSE or LSI
RTC clock, on L4 MCUs.
Note that prior to this commit the default clocks on an L4 part were MSI
and LSE. The defaults are now MSI and LSI.
In mpconfigboard.h select the clock source via:
#define MICROPY_HW_RTC_USE_LSE (0) or (1)
#define MICROPY_HW_CLK_USE_HSE (0) or (1)
and the PLLSAI1 N,P,Q,R settings:
#define MICROPY_HW_CLK_PLLSAIN (12)
#define MICROPY_HW_CLK_PLLSAIP (RCC_PLLP_DIV7)
#define MICROPY_HW_CLK_PLLSAIQ (RCC_PLLQ_DIV2)
#define MICROPY_HW_CLK_PLLSAIR (RCC_PLLR_DIV2)
The the nrfx driver is aware of chip specific registers, while
the raw HAL abstraction is not. This driver enables use of NVMC
in non-secure domain for nrf9160.
This patch moves the check for MICROPY_PY_MACHINE_TEMP to come
before the inclusion of nrf_temp.h. The nrf_temp.h depends on
the NRF_TEMP_Type which might not be defined for all nRF devices.
For use with F0 MCUs that don't have HSI48. Select the clock source
explicitly in mpconfigboard.h.
On the NUCLEO_F091RC board use HSE bypass when HSE is chosen because the
NUCLEO clock source is STLINK not a crystal.
Before this patch the UART baudrate on F0 MCUs was wrong because the
stm32lib SystemCoreClockUpdate sets SystemCoreClock to 8MHz instead of
48MHz if HSI48 is routed directly to SYSCLK.
The workaround is to use HSI48 -> PREDIV (/2) -> PLL (*2) -> SYSCLK.
Fixes issue #5049.
Enabled by default, but disabled when REPL is connected to the VCP (this is
the existing behaviour). Can be configured at run-time with, eg:
pyb.USB_VCP().init(flow=pyb.USB_VCP.RTS | pyb.USB_VCP.CTS)
The new fdcan.c file provides the low-level C interface to the FDCAN
peripheral, and pyb_can.c is updated to support both traditional CAN and
FDCAN, depending on the MCU being compiled for.
Add the project file to the mpy-cross directory, which is also where the
executable ends up, and change the Appveyor settings to build mpy-cross
with both msvc and mingw-w64 and verify this all works by running tests
with --via-mpy.
If this is not set it might default to calls to open() to use text mode
which is usually not wanted, and even wrong and leading to incorrect
results when loading binary .mpy files.
This also means that text files written and read will not have line-ending
translation from \n to \r\n and vice-versa anymore. This shouldn't be much
of a problem though since most tools dealing with text files adapt
automatically to any of the 2 formats.