In CPython, `_thread.start_new_thread()` returns an ID that is the same ID
that is returned by `_thread.get_ident()`. The current MicroPython
implementation of `_thread.start_new_thread()` always returns `None`.
This modifies the required functions to return a value. The native thread
id is returned since this can be used for interop with other functions, for
example, `pthread_kill()` on *nix. `_thread.get_ident()` is also modified
to return the native thread id so that the values match and avoids the need
for a separate `native_id` attribute.
Fixes issue #12153.
Signed-off-by: David Lechner <david@pybricks.com>
Showing the period alway as microsecond quantities, since tick_hz is
assumed as 1_000_000 if the period is given by freq=xxx. If the period is
larger than 0xffffffff, the value is divided by 1000 and "000" is appended
in the display. That works for periods up to about 50 days.
Signed-off-by: robert-hh <robert@hammelrath.com>
PICO might not always be a unique name across all ports, and the
convention generally for other boards is to do VENDOR_BOARD.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This allows switching between variants without clobbering the build
output.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This was used to override the firmware filename generated by the build
server (to match the historical name before board definitions existed).
Now we're making everything use the board definition name (i.e. the
directory name).
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This is to support a future change to add the variant name to the build
directory and therefore should be the same style as the board name.
This only affects the WEACTSTUDIO board. Also standardises on a convention
for naming flash-size variants. Normally we would write e.g. 2MiB, but in
uppercase, it's awkward to write 2MIB, so instead use 2M, 512K, etc for
variant names, but use 2MiB when not constrained by case (e.g. a regular
filename).
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This is difficult to implement on cmake-based ports, and having the list
of variants in mpconfigboard.{cmake,mk} duplicates information that's
already in board.json.
This removes the existing query-variants make target from stm32 & rp2
and the definition of BOARD_VARIANTS from the various board files.
Also renames the cmake variable to MICROPY_BOARD_VARIANT to match other
variables such as MICROPY_BOARD. The make variable stays as
BOARD_VARIANT.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit:
- Finds a common set of board feature tags and maps existing features to
that reduced set.
- Removes some less-useful board feature tags.
- Ensures all MCUs are specified correctly.
- Ensures all boards have a vendor (and fixes some vendor names).
This is to make the downloads page show a less intimidating set of filters.
Work done in conjunction with Matt Trentini <matt.trentini@gmail.com>.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
And use it in mp_hal_get_pin_obj() and machine_pin_make_new(). That way,
mp_hal_get_pin_obj() accepts both int and str objects as argument, allowing
use of a pin specifier instead of a pin object in the constructor of
devices which need a pin as parameter.
E.g. instead of
uart = UART(0, tx=Pin(0), rx=Pin(1))
one can write:
uart = UART(0, tx=0, rx=1)
Signed-off-by: robert-hh <robert@hammelrath.com>
Mostly updates comments, but also renames the UASYNCIO enum value to
ASYNCIO.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The asyncio module now has much better CPython compatibility and
deserves to be just called "asyncio".
This will avoid people having to write `from uasyncio import asyncio`.
Renames all files, and updates port manifests to use the new path. Also
renames the built-in _uasyncio to _asyncio.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
In 5fe2a3f1 the ESP32 port underwent a change to how `MICROPY_PORT_DIR`
is defined. This commit normalizes the `rp2` port to use the same
underlying variable mechanism (`CMAKE_CURRENT_LIST_DIR`).
Signed-off-by: Brian 'redbeard' Harrington <redbeard@dead-city.org>
Applies to drivers/examples/extmod/port-modules/tools.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Updates any includes, and references from Makefiles/CMake.
This essentially reverts what was done long ago in commit
136b5cbd76
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This renames the builtin-modules, such that help('modules') and printing
the module object will show "module" rather than "umodule".
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Updates all `help()` output to use the phrase:
`For online docs please visit http://docs.micropython.org/`
Some ports previously used different wording, some pointed to the wrong
link. Also make all ports use `help.c` for consistency.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
These have by default FAT support. The SAMD21 build does not support FAT.
The nrf port also implements os.sync(), but has it's own copy of moduos.c.
Code size increases seen: 40 to 56 bytes.
Signed-off-by: robert-hh <robert@hammelrath.com>
Building the Pico-W needs the MICROPY_PY_NETWORK_CYW43 flag to be set in
order to include building the CYW43 Wifi driver. But then mp_hal_get_mac()
handles the MAC assignment for all nics the "CYW43 way", copying the real
MAC provided by the WiFi hardware. This will fail for all other NIC types,
resulting in an invalid MAC address.
The solution in this commit is to add a check for the NIC type parameter
idx and handle the MAC address respectively.
Convert to an absolute path to always reliably locate manifest.py. This is
already done in Makefile, but is also needed in CMakeLists.txt if cmake is
invoked directly.
Signed-off-by: Phil Howard <phil@pimoroni.com>
Currently rp2.StateMachine.exec(instr_in) requires that the instr_in
parameter be a string representing the PIO assembly language instruction
to be encoded by rp2.asm_pio_encode(). This commit allows the parameter
to also be of integral type. This is useful if the exec() method is
being called often where the use of pre-encoded machine code is
desireable.
This commit still supports calls like:
sm.exec("set(0, 1)")
It also now supports calls like:
# Performed once earlier, maybe in __init__()
assembled_instr = rp2.asm_pio_encode("out(y, 8)", 0)
# Performed multiple times later as the PIO state machine is
# configured for its next run.
sm.exec(assembled_instr)
The existing examples/rp2/pio_exec.py and examples/rp2/pio_pwm.py that
exercise the rp2.StateMachine.exec() method still work with this change.
Signed-off-by: Adam Green <adamgrym@yahoo.com>
All ports that enable MICROPY_PY_MACHINE_PWM now enable these two
sub-options, so remove these sub-options altogether to force consistency in
new ports that implement machine.PWM.
Signed-off-by: Damien George <damien@micropython.org>
Changes in this commit:
- Limit duty_u16() to 65535 and duty_ns() to the period duration.
- Return 0 for pwm.freq() if the frequency has not been set yet.
- Return 0 for pwm.duty_us16() and duty_ns() unless both frequency and
duty cycle have been set.
- Initialize the pin to PWM at the very end of the constructor, to avoid
possible glitches on the pin when setting up the PWM.
This adds support for freq/duty_u16/duty_ns keyword arguments in the PWM
constructor, and adds the PWM.init() method. Using init() without
arguments enables a previously deinit-ed PWM again.
Further changes in this commit:
- Do not start PWM output if only duty was set.
- Stop all PWM slices on soft-reset.
- Fix a bug when changing the freq on a channel pair with duty_ns set.
Based on extmod/utime_mphal.c, with:
- a globals dict added
- time.localtime wrapper added
- time.time wrapper added
- time.time_ns function added
New configuration options are added for this module:
- MICROPY_PY_UTIME (enabled at basic features level)
- MICROPY_PY_UTIME_GMTIME_LOCALTIME_MKTIME
- MICROPY_PY_UTIME_TIME_TIME_NS
Signed-off-by: Damien George <damien@micropython.org>
Since c80e7c14e6 changed the GC heap to use
all unused RAM, there is no longer any RAM available for the traditional C
heap (which is not used by default in MicroPython but may be used by C
extensions). This commit adds a provision for a board to reserve RAM for
the C heap, by defining MICROPY_C_HEAP_SIZE.
Signed-off-by: Damien George <damien@micropython.org>
This adds a mechanism to track a pending notify/indicate operation that
is deferred due to the send buffer being full. This uses a tracked alloc
that is passed as the content arg to the callback.
This replaces the previous mechanism that did this via the global pending
op queue, shared with client read/write ops.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit adds support for the `timeout` keyword argument to machine.I2C
on the rp2 port, following how it's done on other ports.
The main motivation here is avoid the interpreter crashing due to infinite
loops when SDA is stuck low, which is quite common if the board gets reset
while reading from an I2C device.
A default timeout of 50ms is chosen because it's consistent with:
- Commit a707fe50b0 which used a timeout of
50,000us for zero-length writes on the rp2 port.
- The machine.SoftI2C class which uses 50,000us as the default timeout.
- The stm32 port's hardware I2C, which uses 50,000us for
I2C_POLL_DEFAULT_TIMEOUT_US.
This commit also fixes the default timeout on the esp32 port to be
consistent with the above, and updates the documentation for machine.I2C to
document this keyword argument.
Helps prevent the filesystem from getting formatted by mistake, among other
things. For example, on a Pico board, entering Ctrl+D and Ctrl+C fast many
times will eventually wipe the filesystem (without warning or notice).
Further rationale: Ctrl+C is used a lot by automation scripts (eg mpremote)
and UI's (eg Mu, Thonny) to get the board into a known state. If the board
is not responding for a short time then it's not possible to know if it's
just a slow start up (eg in _boot.py), or an infinite loop in the main
application. The former should not be interrupted, but the latter should.
The only way to distinguish these two cases would be to wait "long enough",
and if there's nothing on the serial after "long enough" then assume it's
running the application and Ctrl+C should break out of it. But defining
"long enough" is impossible for all the different boards and their possible
behaviour. The solution in this commit is to make it so that frozen
start-up code cannot be interrupted by Ctrl+C. That code then effectively
acts like normal C start-up code, which also cannot be interrupted.
Note: on the stm32 port this was never seen as an issue because all
start-up code is in C. But now other ports start to put more things in
_boot.py and so this problem crops up.
Signed-off-by: David Grayson <davidegrayson@gmail.com>
This is a best-effort implementation of write polling. It's difficult to
do correctly because if there are multiple output streams (eg UART and USB
CDC) then some may not be writeable while others are. A full solution
should also have a return value from mp_hal_stdout_tx_strn(), returning the
number of bytes written to the stream(s). That's also hard to define.
The renesas-ra and stm32 ports already implement a similar best-effort
mechanism for write polling.
Fixes issue #11026.
Signed-off-by: Damien George <damien@micropython.org>
Prior to this change, setting of UART parameters like parity, stop bits or
data bits did not work correctly. As suggested by @iabdalkader, adding
__DSB() fixes the problem, making sure that changes to the UART LCR_H
register are seen by the peripheral.
Note: the FIFO is already enabled in the call to uart_init(), so the call
to uart_set_fifo_enabled() is not required, but kept for visibility.
Fixes issue #10976.
For builds with DEBUG=1 and MICROPY_HW_ENABLE_UART_REPL=1, calling
stdio_init_all() in main() detaches the UART input from REPL. This change
suppresses calling stdio_init_all() then.
Previously, setting MICROPY_HW_ENABLE_USBDEV to 0 caused build errors. The
change affects the nrf and samd ports as well, so MICROPY_HW_ENABLE_USBDEV
had to be explicitly enabled there.
The configuration options MICROPY_HW_ENABLE_USBDEV and
MICROPY_HW_ENABLE_UART_REPL are independent, and can be enabled or disabled
by a board.
Signed-off-by: Damien George <damien@micropython.org>
Borrowing an idea from the mimxrt port (also stm32 port): in the loader
input file memmap_mp.ld calculate __GcHeapStart and __GcHeapEnd as the
unused RAM. Then in main.c use these addresses as arguments to gc_init().
The benefits of this change are:
1) When libraries are added or removed in the future changing BSS usage,
main.c's sizing of the GC heap does not need to be changed.
2) Currently these changes make the GC area about 30 KBytes larger, eg on
PICO_W the GC heap increases from 166016 to 192448 bytes. Without that
change this RAM would never get used.
3) If someone wants to disable one or more SRAM blocks on the RP2040 to
reduce power consumption it will be easy: just change the MEMORY section
in memmap_mp.ld. For instance to not use SRAM2 and SRAM3 change it to:
MEMORY
{
FLASH(rx) : ORIGIN = 0x10000000, LENGTH = 2048k
RAM(rwx) : ORIGIN = 0x21000000, LENGTH = 128k
SCRATCH_X(rwx) : ORIGIN = 0x20040000, LENGTH = 4k
SCRATCH_Y(rwx) : ORIGIN = 0x20041000, LENGTH = 4k
}
Then to turn off clocks for SRAM2 and SRAM3 from MicroPython, set the
appropriate bits in WAKE_EN0 and SLEEP_EN0.
Tested by running the firmware.uf2 file on PICO_W and displaying
micropython.mem_info(). Confirmed GC total size approximately matched the
size calculated by the loader.
Signed-off-by: cpottle9 <cpottle9@outlook.com>
This function seems to work fine in multi-core applications now.
The delay is now in units of microseconds instead of depending on the clock
speed, and is adjustable by board configuration headers.
Also added documentation.