This also tweaks the repr for unicode strings to only escape a few
utf-8 code points. This makes emoji show in os.listdir() for
example.
Also, enable exfat support on full builds.
Fixes#5146
This adds some additional code in mkfs which doesn't seem necessary, and
Disabling it saves 172 bytes flash.
Testing performed: Using a Feather M0 Adalogger, checked that
* an sdcard could still be mounted (using adafruit_sdcard)
* os.listdir() of "/" and "/sd" worked
* CIRCUITPY still mounted
The RP2040 is new microcontroller from Raspberry Pi that features
two Cortex M0s and eight PIO state machines that are good for
crunching lots of data. It has 264k RAM and a built in UF2
bootloader too.
Datasheet: https://pico.raspberrypi.org/files/rp2040_datasheet.pdf
This changes lots of files to unify `board.h` across ports. It adds
`board_deinit` when CIRCUITPY_ALARM is set. `main.c` uses it to
deinit the board before deep sleeping (even when pretending.)
Deep sleep is now a two step process for the port. First, the
port should prepare to deep sleep based on the given alarms. It
should set alarms for both deep and pretend sleep. In particular,
the pretend versions should be set immediately so that we don't
miss an alarm as we shutdown. These alarms should also wake from
`port_idle_until_interrupt` which is used when pretending to deep
sleep.
Second, when real deep sleeping, `alarm_enter_deep_sleep` is called.
The port should set any alarms it didn't during prepare based on
data it saved internally during prepare.
ESP32-S2 sleep is a bit reorganized to locate more logic with
TimeAlarm. This will help it scale to more alarm types.
Fixes#3786
This allows calls to `allocate_memory()` while the VM is running, it will then allocate from the GC heap (unless there is a suitable hole among the supervisor allocations), and when the VM exits and the GC heap is freed, the allocation will be moved to the bottom of the former GC heap and transformed into a proper supervisor allocation. Existing movable allocations will also be moved to defragment the supervisor heap and ensure that the next VM run gets as much memory as possible for the GC heap.
By itself this breaks terminalio because it violates the assumption that supervisor_display_move_memory() still has access to an undisturbed heap to copy the tilegrid from. It will work in many cases, but if you're unlucky you will get garbled terminal contents after exiting from the vm run that created the display. This will be fixed in the following commit, which is separate to simplify review.
`pow(a, b, c)` can compute `(a ** b) % c` efficiently (in time and memory).
This can be useful for extremely specific applications, like implementing
the RSA cryptosystem. For typical uses of CircuitPython, this is not an
important feature. A survey of the bundle and learn system didn't find
any uses.
Disable it on M0 builds so that we can fit in needed upgrades to the USB
stack.
* No weak link for modules. It only impacts _os and _time and is
already disabled for non-full builds.
* Turn off PA00 and PA01 because they are the crystal on the Metro
M0 Express.
* Change ejected default to false to move it to BSS. It is set on
USB connection anyway.
* Set sinc_filter to const. Doesn't help flash but keeps it out of
RAM.
This adds the `async def` and `await` verbs to valid CircuitPython syntax using the Micropython implementation.
Consider:
```
>>> class Awaitable:
... def __iter__(self):
... for i in range(3):
... print('awaiting', i)
... yield
... return 42
...
>>> async def wait_for_it():
... a = Awaitable()
... result = await a
... return result
...
>>> task = wait_for_it()
>>> next(task)
awaiting 0
>>> next(task)
awaiting 1
>>> next(task)
awaiting 2
>>> next(task)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration: 42
>>>
```
and more excitingly:
```
>>> async def it_awaits_a_subtask():
... value = await wait_for_it()
... print('twice as good', value * 2)
...
>>> task = it_awaits_a_subtask()
>>> next(task)
awaiting 0
>>> next(task)
awaiting 1
>>> next(task)
awaiting 2
>>> next(task)
twice as good 84
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration:
```
Note that this is just syntax plumbing, not an all-encompassing implementation of an asynchronous task scheduler or asynchronous hardware apis.
uasyncio might be a good module to bring in, or something else - but the standard Python syntax does not _strictly require_ deeper hardware
support.
Micropython implements the await verb via the __iter__ function rather than __await__. It's okay.
The syntax being present will enable users to write clean and expressive multi-step state machines that are written serially and interleaved
according to the rules provided by those users.
Given that this does not include an all-encompassing C scheduler, this is expected to be an advanced functionality until the community settles
on the future of deep hardware support for async/await in CircuitPython. Users will implement yield-based schedulers and tasks wrapping
synchronous hardware APIs with polling to avoid blocking, while their application business logic gets simple `await` statements.
Tested & working:
* Send standard packets
* Receive standard packets (1 FIFO, no filter)
Interoperation between SAM E54 Xplained running this tree and
MicroPython running on STM32F405 Feather with an external
transceiver was also tested.
Many other aspects of a full implementation are not yet present,
such as error detection and recovery.