This saves code space in builds which use link-time optimization.
The optimization drops the untranslated strings and replaces them
with a compressed_string_t struct. It can then be decompressed to
a c string.
Builds without LTO work as well but include both untranslated
strings and compressed strings.
This work could be expanded to include QSTRs and loaded strings if
a compress method is added to C. Its tracked in #531.
This adapts the allocation process to start from either end of the heap
when searching for free space. The default behavior is identical to the
existing behavior where it starts with the lowest block and looks higher.
Now it can also look from the highest block and lower depending on the
long_lived parameter to gc_alloc. As the heap fills, the two sections may
overlap. When they overlap, a collect may be triggered in order to keep
the long lived section compact. However, free space is always eligable
for each type of allocation.
By starting from either of the end of the heap we have ability to separate
short lived objects from long lived ones. This separation reduces heap
fragmentation because long lived objects are easy to densely pack.
Most objects are short lived initially but may be made long lived when
they are referenced by a type or module. This involves copying the
memory and then letting the collect phase free the old portion.
QSTR pools and chunks are always long lived because they are never freed.
The reallocation, collection and free processes are largely unchanged. They
simply also maintain an index to the highest free block as well as the lowest.
These indices are used to speed up the allocation search until the next collect.
In practice, this change may slightly slow down import statements with the
benefit that memory is much less fragmented afterwards. For example, a test
import into a 20k heap that leaves ~6k free previously had the largest
continuous free space of ~400 bytes. After this change, the largest continuous
free space is over 3400 bytes.
So long as the input qstr identifier is valid (below the maximum number of
qstrs) the function will always return a valid pointer. This patch
eliminates the "return 0" dead-code.
The technique of using alloca is how dotted import names are composed in
mp_import_from and mp_builtin___import__, so use the same technique in the
compiler. This puts less pressure on the heap (only the stack is used if
the qstr already exists, and if it doesn't exist then the standard qstr
block memory is used for the new qstr rather than a separate chunk of the
heap) and reduces overall code size.
In both parse.c and qstr.c, an internal chunking allocator tidies up
by calling m_renew to shrink an allocated chunk to the size used, and
assumes that the chunk will not move. However, when MICROPY_ENABLE_GC
is false, m_renew calls the system realloc, which does not guarantee
this behaviour. Environments where realloc may return a different
pointer include:
(1) mbed-os with MBED_HEAP_STATS_ENABLED (which adds a wrapper around
malloc & friends; this is where I was hit by the bug);
(2) valgrind on linux (how I diagnosed it).
The fix is to call m_renew_maybe with allow_move=false.
When there're C files to be (re)compiled, they're all passed first to
preprocessor. QSTR references are extracted from preprocessed output and
split per original C file. Then all available qstr files (including those
generated previously) are catenated together. Only if the resulting content
has changed, the output file is written (causing almost global rebuild
to pick up potentially renumbered qstr's). Otherwise, it's not updated
to not cause spurious rebuilds. Related make rules are split to minimize
amount of commands executed in the interim case (when some C files were
updated, but no qstrs were changed).
The config variable MICROPY_MODULE_FROZEN is now made of two separate
parts: MICROPY_MODULE_FROZEN_STR and MICROPY_MODULE_FROZEN_MPY. This
allows to have none, either or both of frozen strings and frozen mpy
files (aka frozen bytecode).
This patch makes configurable, via MICROPY_QSTR_BYTES_IN_HASH, the
number of bytes used for a qstr hash. It was originally fixed at 2
bytes, and now defaults to 2 bytes. Setting it to 1 byte will save
ROM and RAM at a small expense of hash collisions.
Previous to this patch all interned strings lived in their own malloc'd
chunk. On average this wastes N/2 bytes per interned string, where N is
the number-of-bytes for a quanta of the memory allocator (16 bytes on 32
bit archs).
With this patch interned strings are concatenated into the same malloc'd
chunk when possible. Such chunks are enlarged inplace when possible,
and shrunk to fit when a new chunk is needed.
RAM savings with this patch are highly varied, but should always show an
improvement (unless only 3 or 4 strings are interned). New version
typically uses about 70% of previous memory for the qstr data, and can
lead to savings of around 10% of total memory footprint of a running
script.
Costs about 120 bytes code size on Thumb2 archs (depends on how many
calls to gc_realloc are made).
Previously to this patch all constant string/bytes objects were
interned by the compiler, and this lead to crashes when the qstr was too
long (noticeable now that qstr length storage defaults to 1 byte).
With this patch, long string/bytes objects are never interned, and are
referenced directly as constant objects within generated code using
load_const_obj.
This new config option sets how many fixed-number-of-bytes to use to
store the length of each qstr. Previously this was hard coded to 2,
but, as per issue #1056, this is considered overkill since no-one
needs identifiers longer than 255 bytes.
With this patch the number of bytes for the length is configurable, and
defaults to 1 byte. The configuration option filters through to the
makeqstrdata.py script.
Code size savings going from 2 to 1 byte:
- unix x64 down by 592 bytes
- stmhal down by 1148 bytes
- bare-arm down by 284 bytes
Also has RAM savings, and will be slightly more efficient in execution.
This patch consolidates all global variables in py/ core into one place,
in a global structure. Root pointers are all located together to make
GC tracing easier and more efficient.
gc.enable/disable are now the same as CPython: they just control whether
automatic garbage collection is enabled or not. If disabled, you can
still allocate heap memory, and initiate a manual collection.
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
The autogenerated header files have been moved about, and an extra
include dir has been added, which means you can give a custom
BUILD=newbuilddir option to make, and everything "just works"
Also tidied up the way the different Makefiles build their include-
directory flags