Only one of pcd_fs_handle/pcd_hs_handle is ever initialised, so if both of
these USB peripherals are enabled then one of these if-statements will
access invalid memory pointed to by an uninitialised Instance. This patch
fixes this bug by explicitly referencing the peripheral struct.
This patch adds support to mboot for programming external SPI flash. It
allows SPI flash to be programmed via a USB DFU utility in the same way
that internal MCU flash is programmed.
Prior to this patch the QSPI driver assumed that the length of all data
reads and writes was a multiple of 4. This patch allows any length. Reads
are optimised for speed by using 32-bit transfers when possible, but writes
always use a byte transfer because they only use a single data IO line and
are relatively slow.
The DMA peripheral is limited to transferring 65535 elements at a time so
in order to send more than that the SPI driver must split the transfers up.
The user must be aware of this limit if they are relying on precise timing
of the entire SPI transfer, because there might be a small delay between
the split transfers.
Fixes issue #3851, and thanks to @kwagyeman for the original fix.
This behaviour of a NULL write C method on a stream that uses the write
adaptor objects is no longer supported. It was only ever used by the
coverage build for testing the fail path of mp_get_stream_raise().
If the user button is held down indefinitely (eg unintenionally, or because
the GPIO signal of the user button is connected to some external device)
then it makes sense to end the reset mode cycle with the default mode of
1, which executes code as normal.
It's possible (at least on F4 MCU's) to have RXNE and STOPF set at the same
time during a call to the slave IRQ handler. In such cases RXNE should be
handled before STOPF so that all bytes are processed before
i2c_slave_process_rx_end() is called.
Due to buffering of outgoing bytes on the I2C bus, detection of a NACK
using the ISR_NACKF flag needs to account for the case where ISR_NACKF
corresponds to the previous-to-previous byte.
This patch renames the existing SPI flash API functions to reflect the fact
that the go through the cache:
mp_spiflash_flush -> mp_spiflash_cache_flush
mp_spiflash_read -> mp_spiflash_cached_read
mp_spiflash_write -> mp_spiflash_cached_write
The DFU USB config descriptor returns 0x0800=2048 for the supported
transfer size, and this applies to both TX (IN) and RX (OUT). So increase
the rx_buf to support this size without having a buffer overflow on
received data.
With this patch mboot in USB DFU mode now works with dfu-util.
Currently <WLAN>.isconnected() always returns True if a static IP is set,
regardless of the state of the connection.
This patch introduces a new flag 'wifi_sta_connected' which is set in
event_handler() when GOT_IP event is received and reset when DISCONNECTED
event is received (unless re-connect is successful). isconnected() now
simply returns the status of this flag (for STA_IF).
The pre-existing flag misleadingly named 'wifi_sta_connected" is also
renamed to 'wifi_sta_connect_requested'.
Fixes issue #3837
MICROPY_PY_DELATTR_SETATTR can now be enabled without a performance hit for
classes that don't use this feature.
MICROPY_PY_BUILTINS_NOTIMPLEMENTED is a minor addition that improves
compatibility with CPython.
They are now efficient (in runtime performance) and provide a useful
feature that's hard to obtain without them enabled.
See issue #3644 and PR #3826 for background.
Now that the coverage build has fully switched to the VFS sub-system these
functions were no longer available, so add them to the uos_vfs module.
Also, vfs_open is no longer needed, it's available as the built-in open.
The unix coverage build is now switched fully to the VFS implementation, ie
the uos module is the uos_vfs module. For example, one can now sandbox uPy
to their home directory via:
$ ./micropython_coverage
>>> import uos
>>> uos.umount('/') # unmount existing root VFS
>>> vfs = uos.VfsPosix('/home/user') # create new POSIX VFS
>>> uos.mount(vfs, '/') # mount new POSIX VFS at root
Some filesystem/OS features may no longer work with the coverage build due
to this change, and these need to be gradually fixed.
The standard unix port remains unchanged, it still uses the traditional uos
module which directly accesses the underlying host filesystem.
This patch adds support for building the firmware with external SPI RAM
enabled. It is disabled by default because it adds overhead (due to
silicon workarounds) and reduces performance (because it's slower to have
bytecode and objects stored in external RAM).
To enable it, either use "make CONFIG_SPIRAM_SUPPORT=1", or add this line
to you custom makefile/GNUmakefile (before "include Makefile"):
CONFIG_SPIRAM_SUPPORT = 1
When this option is enabled the MicroPython heap is automatically allocated
in external SPI RAM.
Thanks to Angus Gratton for help with the compiler and linker settings.
The Wiznet5k series of chips support a MACRAW mode which allows the host to
send and receive Ethernet frames directly. This can be hooked into the
lwIP stack to provide a full "socket" implementation using this Wiznet
Ethernet device. This patch adds support for this feature.
To enable the feature one must add the following to mpconfigboard.mk, or
mpconfigport.mk:
MICROPY_PY_WIZNET5K = 5500
and the following to mpconfigboard.h, or mpconfigport.h:
#define MICROPY_PY_LWIP (1)
After wiring up the module (X5=CS, X4=RST), usage on a pyboard is:
import time, network
nic = network.WIZNET5K(pyb.SPI(1), pyb.Pin.board.X5, pyb.Pin.board.X4)
nic.active(1)
while not nic.isconnected():
time.sleep_ms(50) # needed to poll the NIC
print(nic.ifconfig())
Then use the socket module as usual.
Compared to using the built-in TCP/IP stack on the Wiznet module, some
performance is lost in MACRAW mode: with a lot of memory allocated to lwIP
buffers, lwIP gives Around 750,000 bytes/sec max TCP download, compared
with 1M/sec when using the TCP/IP stack on the Wiznet module.
It should be up to the NIC itself to decide if the network interface is
removed upon soft reset. Some NICs can keep the interface up over a soft
reset, which improves usability of the network.
Pins with multiple alt-funcs for the same peripheral (eg USART_CTS_NSS)
need to be split into individual alt-funcs for make-pins.py to work
correctly.
This patch changes the following:
- Split `..._CTS_NSS` into `..._CTS/..._NSS`
- Split `..._RTS_DE` into `..._RTS/..._DE`
- Split `JTDO_SWO` into `JTDO/TRACESWO` for consistency
- Fixed `TRACECK` to `TRACECLK` for consistency
If no block devices are defined by a board then storage support will be
disabled. This means there is no filesystem provided by either the
internal flash or external SPI flash. But the VFS system can still be
enabled and filesystems provided on external devices like an SD card.
Mboot is a custom bootloader for STM32 MCUs. It can provide a USB DFU
interface on either the FS or HS peripherals, as well as a custom I2C
bootloader interface.
These files provide no additional information, all the version and license
information is captured in the relevant files in these subdirectories.
Thanks to @JoeSc for the original patch.
This patch allows to use lwIP as the implementation of the usocket module,
instead of the existing socket-multiplexer that delegates the entire TCP/IP
layer to the NIC itself.
This is disabled by default, and enabled by defining MICROPY_PY_LWIP to 1.
When enabled, the lwIP TCP/IP stack will be included in the build with
default settings for memory usage and performance (see
lwip_inc/lwipopts.h). It is then up to a particular NIC to register itself
with lwIP using the standard lwIP netif API.
This patch makes it so that UART(0) can by dynamically attached to and
detached from the REPL by using the uos.dupterm function. Since WebREPL
uses dupterm slot 0 the UART uses dupterm slot 1 (a slot which is newly
introduced by this patch). UART(0) must now be attached manually in
boot.py (or otherwise) and inisetup.py is changed to provide code to do
this. For example, to attach use:
import uos, machine
uart = machine.UART(0, 115200)
uos.dupterm(uart, 1)
and to detach use:
uos.dupterm(None, 1)
When attached, all incoming chars on UART(0) go straight to stdin so
uart.read() will always return None. Use sys.stdin.read() if it's needed
to read characters from the UART(0) while it's also used for the REPL (or
detach, read, then reattach). When detached the UART(0) can be used for
other purposes.
If there are no objects in any of the dupterm slots when the REPL is
started (on hard or soft reset) then UART(0) is automatically attached.
Without this, the only way to recover a board without a REPL would be to
completely erase and reflash (which would install the default boot.py which
attaches the REPL).
Add CONFIG_NET_DHCPV4, which, after
https://github.com/zephyrproject-rtos/zephyr/pull/5750 works as follows:
static addresses are configured after boot, and DHCP requests are sent
at the same time. If valid DHCP reply is received, it overrides static
addresses.
This setup works out of the box for both direct connection to a
workstation (DHCP server usually is not available) and for connection
to a router (DHCP is available and required).
This patch adds the configuration MICROPY_HW_USB_ENABLE_CDC2 which enables
a new USB device configuration at runtime: VCP+VCP+MSC. It will give two
independent VCP interfaces available via pyb.USB_VCP(0) and pyb.USB_VCP(1).
The first one is the usual one and has the REPL on it. The second one is
available for general use.
This configuration is disabled by default because if the mode is not used
then it takes up about 2200 bytes of RAM. Also, F4 MCUs can't support this
mode on their USB FS peripheral (eg PYBv1.x) because they don't have enough
endpoints. The USB HS peripheral of an F4 supports it, as well as both the
USB FS and USB HS peripherals of F7 MCUs.
The documentation (including the examples) for elapsed_millis and
elapsed_micros can be found in docs/library/pyb.rst so doesn't need to be
written in full in the source code.
When disabled, the pyb.I2C class saves around 8k of code space and 172
bytes of RAM. The same functionality is now available in machine.I2C
(for F4 and F7 MCUs).
It is still enabled by default.
This driver uses low-level register access to control the I2C peripheral
(ie it doesn't rely on the ST HAL) and provides the same C-level API as the
existing F7 hardware driver.
- Updated supported git hash to current IDF version.
- Added missing targets and includes to Makefile.
- Updated error codes for networking module.
- Added required constant to sdkconfig configuration.
On this 32-bit arch there's no need to use the long version of the format
specifier. It's only there to appease the compiler which checks the type
of the args passed to printf. Removing the "l" saves a bit of code space.
If a socket is cleanly shut down by the peer then reads on this socket
should continue to return zero bytes. The lwIP socket API does not have
this behaviour (it only returns zero once, then blocks on subsequent calls)
so this patch adds explicit checks and logic for peer closed sockets.
Add --init to the submodule update example, thus, all submodules get
initialised including the nested (--recursive) ones. Without it there
might not be a submodule init.
Disabling this saves around 6000 bytes of code space and gets the 512k
build fitting in the available flash again (it increased lately due to an
increase in the size of the ESP8266 SDK).
For a given IRQn (eg UART) there's no need to carry around both a PRI and
SUBPRI value (eg IRQ_PRI_UART, IRQ_SUBPRI_UART). Instead, the IRQ_PRI_UART
value has been changed in this patch to be the encoded hardware value,
using NVIC_EncodePriority. This way the NVIC_SetPriority function can be
used directly, instead of going through HAL_NVIC_SetPriority which must do
extra processing to encode the PRI+SUBPRI.
For a priority grouping of 4 (4 bits for preempt priority, 0 bits for the
sub-priority), which is used in the stm32 port, the IRQ_PRI_xxx constants
remain unchanged in their value.
This patch also "fixes" the use of raise_irq_pri() which should be passed
the encoded value (but as mentioned above the unencoded value is the same
as the encoded value for priority grouping 4, so there was no bug from this
error).
The problem is the existing code which tries to optimise the
reinitialisation of the DMA breaks the abstraction of the HAL. For the
STM32L4 the HAL's DMA setup code maintains two private vars (ChannelIndex,
DmaBaseAddress) and updates a hardware register (CCR).
In HAL_DMA_Init(), the CCR is updated to set the direction of the DMA.
This is a problem because, when using the SD Card interface, the same DMA
channel is used in both directions, so the direction bit in the CCR must
follow that.
A quick and effective fix for the L4 is to simply call HAL_DMA_DeInit() and
HAL_DMA_Init() every time.
ADC3 is used because the H7's internal ADC channels are connected to ADC3
and the uPy driver doesn't support more than one ADC.
Only 12-bit resolution is supported because 12 is hard-coded and 14/16 bits
are not recommended on some ADC3 pins (see errata).
Values from internal ADC channels are known to give wrong values at
present.
The esp8266 uses modlwip.c for its usocket implementation, which allows to
easily support callbacks on socket events (like when a socket becomes ready
for reading). This is not as easy to do for the esp32 which uses the
ESP-IDF-provided lwIP POSIX socket API. Socket events are needed to get
WebREPL working, and this patch provides a way for such events to work by
explicitly polling registered sockets for readability, and then calling the
associated callback if the socket is readable.
After calling HAL_SYSTICK_Config the SysTick IRQ priority is set to 15, the
lowest priority. This commit reconfigures the IRQ priority to the desired
TICK_INT_PRIORITY value.
By default the stm module is included in the build, but a board can now
define MICROPY_PY_STM to 0 to not include this module. This reduces the
firmware by about 7k.
To use HSE bypass mode the board should define:
#define MICROPY_HW_CLK_USE_BYPASS (1)
If this is not defined, or is defined to 0, then HSE oscillator mode is
used.
This patch allows a given board to configure which pins are used for the
CAN peripherals, in a similar way to all the other bus peripherals (I2C,
UART, SPI). To enable CAN on a board the mpconfigboard.h file should
define (for example):
#define MICROPY_HW_CAN1_TX (pin_B9)
#define MICROPY_HW_CAN1_RX (pin_B8)
#define MICROPY_HW_CAN2_TX (pin_B13)
#define MICROPY_HW_CAN2_RX (pin_B12)
And the board config file should no longer define MICROPY_HW_ENABLE_CAN.
The individual union members (like SPI, I2C) are never used, only the
generic "reg" entry is. And the union names can clash with macro
definitions in the HAL so better to remove them.
The only configuration that changes with this patch is that on L4 MCUs the
clock prescaler changed from ADC_CLOCK_ASYNC_DIV2 to ADC_CLOCK_ASYNC_DIV1
for the ADCAll object. This should be ok.
A value of DISABLE for EOCSelection is invalid. This would have been
interpreted instead as ADC_EOC_SEQ_CONV, but really it should be
ADC_EOC_SINGLE_CONV for the uses in this code. So this has been fixed.
ExternalTrigConv should be ADC_SOFTWARE_START because all ADC
conversions are started by software. This is now fixed.
This can be used to select the output buffer behaviour of the DAC. The
default values are chosen to retain backwards compatibility with existing
behaviour.
Thanks to @peterhinch for the initial idea to add this feature.
This event queue has UART events posted to it and they need to be drained
for it to operate without error. The queue is not used by the uPy UART
class so it should be removed to prevent the IDF emitting errors.
Fixes#3704.
This patch moves the implementation of stream closure from a dedicated
method to the ioctl of the stream protocol, for each type that implements
closing. The benefits of this are:
1. Rounds out the stream ioctl function, which already includes flush,
seek and poll (among other things).
2. Makes calling mp_stream_close() on an object slightly more efficient
because it now no longer needs to lookup the close method and call it,
rather it just delegates straight to the ioctl function (if it exists).
3. Reduces code size and allows future types that implement the stream
protocol to be smaller because they don't need a dedicated close method.
Code size reduction is around 200 bytes smaller for x86 archs and around
30 bytes smaller for the bare-metal archs.
The main() function has a predefined type in C which is not so useful for
embedded contexts. This patch renames main() to stm32_main() so we can
define our own type signature for this function. The type signature is
defined to have a single argument which is the "reset_mode" and is passed
through as r0 from Reset_Handler. This allows, for example, a bootloader
to pass through information into the main application.
The Reset_Handler needs to copy the data section and zero the BSS, and
these operations should be as optimised as possible to reduce start up
time. The versions provided in this patch are about 2x faster (on a Cortex
M4) than the previous implementations.
Rather than pin objects themselves. The actual object is now pin_X_obj and
defines are provided so that pin_X is &pin_X_obj. This makes it so that
code that uses pin objects doesn't need to know if they are literals or
objects (that need pointers taken) or something else. They are just
entities that can be passed to the map_hal_pin_xxx functions. This mirrors
how the core handles constant objects (eg mp_const_none which is
&mp_const_none_obj) and allows for the possibility of different
implementations of the pin layer.
For example, prior to this patch there was the following:
extern const pin_obj_t pin_A0;
#define pyb_pin_X1 pin_A0
...
mp_hal_pin_high(&pin_A0);
and now there is:
extern const pin_obj_t pin_A0_obj;
#define pin_A0 (&pin_A0_obj)
#define pyb_pin_X1 pin_A0
...
mp_hal_pin_high(pin_A0);
This patch should have minimal effect on board configuration files. The
only change that may be needed is if a board has .c files that configure
pins.
This patch forces a board to explicitly define TEXT1_ADDR in order to
split the firmware into two separate pieces. Otherwise the default is now
to produce only a single continuous firmware image with all ISR, text and
data together.
This patch allows a particular board to independently specify the linker
scripts for 1) the MCU memory layout; 2) how the different firmware
sections are arranged in memory. Right now all boards follow the same
layout with two separate firmware section, one for the ISR and one for the
text and data. This leaves room for storage (filesystem data) to live
between the firmware sections.
The idea with this patch is to accommodate boards that don't have internal
flash storage and only need to have one continuous firmware section. Thus
the common.ld script is renamed to common_ifs.ld to make explicit that it
is used for cases where the board has internal flash storage.
Explicitly writing out the implementation of sys_tick_has_passed makes
these bdev files independent of systick.c and more reusable as a general
component. It also reduces the code size slightly.
The irq.h header is added to spibdev.c because it uses declarations in that
file (irq.h is usually included implicitly via mphalport.h but not always).
Taking the address assumes that the pin is an object (eg a struct), but it
could be a literal (eg an int). Not taking the address makes this driver
more general for other uses.
genhdr/pins.h is an internal header file that defines all of the pin
objects and it's cleaner to have pin.h include it (where the struct's for
these objects are defined) rather than an explicit include by every user.
The HAL requires strict aliasing optimisation to be turned on to function
correctly (at least for the SD card driver on F4 MCUs). This optimisation
was recently disabled with the addition of H7 support due to the H7 HAL
having errors with the strict aliasing optimisation enabled. But this is
now fixed in the latest stm32lib and so the optimisation can now be
re-enabled.
Thanks to @chuckbook for finding that there was a problem with the SD card
on F4 MCUs with the strict aliasing optimisation disabled.