In #4683, tannewt noticed that uncrustify was not running on some
file in common-hal.
I investigated and found that it was not being run on a bunch of paths.
Rather than make incremental changes, I rewrote list_files to work
bsaed on regular expressions; these regular expressions are created from
the same git-style glob patterns.
I spot-checked some specific filenames after this change, and all looks good:
```
$ python3 tools/codeformat.py -v --dry-run tests/basics/int_small.py ports/raspberrypi/common-hal/pulseio/PulseIn.c extmod/virtpin.c tests/thread/thread_exit1.py ports/raspberrypi/background.h extmod/re1.5/recursiveloop.c
tools/codeformat.py -v --dry-run tests/basics/int_small.py ports/raspberrypi/common-hal/pulseio/PulseIn.c extmod/virtpin.c tests/thread/thread_exit1.py ports/raspberrypi/background.h extmod/re1.5/recursiveloop.c
uncrustify -c /home/jepler/src/circuitpython/tools/uncrustify.cfg -lC --no-backup extmod/virtpin.c ports/raspberrypi/background.h ports/raspberrypi/common-hal/pulseio/PulseIn.c
black --fast --line-length=99 -v tests/thread/thread_exit1.py
```
recursiveloop and int_small are excluded, while PulseIn, virtpin,
and background are included.
Testing running from a subdirectory (not _specifically_ supported though):
```
(cd ports && python3 ../tools/codeformat.py -v --dry-run raspberrypi/common-hal/pulseio/PulseIn.c ../extmod/virtpin.c)
../tools/codeformat.py -v --dry-run raspberrypi/common-hal/pulseio/PulseIn.c ../extmod/virtpin.c
uncrustify -c /home/jepler/src/circuitpython/tools/uncrustify.cfg -lC --no-backup ../extmod/virtpin.c raspberrypi/common-hal/pulseio/PulseIn.
```
As a side-effect, a bunch more files are re-formatted now. :-P
It practically does the same as qstr_from_str and was only used in one
place, which should actually use the compile-time MP_QSTR_XXX form for
consistency; qstr_from_str is for runtime strings only.
With MICROPY_FLOAT_IMPL_FLOAT the results of utime.time(), gmtime() and
localtime() change only every 129 seconds. As one consequence
tests/extmod/vfs_lfs_mtime.py will fail on a unix port with LFS support.
With this patch these functions only return floats if
MICROPY_FLOAT_IMPL_DOUBLE is used. Otherwise they return integers.
Two issues are tackled:
1. The calculation of the correct length to print is fixed to treat the
precision as a maximum length instead as the exact length.
This is done for both qstr (%q) and for regular str (%s).
2. Fix the incorrect use of mp_printf("%.*s") to mp_print_strn().
Because of the fix of above issue, some testcases that would print
an embedded null-byte (^@ in test-output) would now fail.
The bug here is that "%s" was used to print null-bytes. Instead,
mp_print_strn is used to make sure all bytes are outputted and the
exact length is respected.
Test-cases are added for both %s and %q with a combination of precision
and padding specifiers.
Also known as L2CAP "connection oriented channels". This provides a
socket-like data transfer mechanism for BLE.
Currently only implemented for NimBLE on STM32 / Unix.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This changes stm32 from using PENDSV to run NimBLE to use the MicroPython
scheduler instead. This allows Python BLE callbacks to be invoked directly
(and therefore synchronously) rather than via the ringbuffer.
The NimBLE UART HCI and event processing now happens in a scheduled task
every 128ms. When RX IRQ idle events arrive, it will also schedule this
task to improve latency.
There is a similar change for the unix port where the background thread now
queues the scheduled task.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This requires that the event handlers are called from non-interrupt context
(i.e. the MicroPython scheduler).
This will allow the BLE stack (e.g. NimBLE) to run from the scheduler
rather than an IRQ like PENDSV, and therefore be able to invoke Python
callbacks directly/synchronously. This allows writing Python BLE handlers
for events that require immediate response such as _IRQ_READ_REQUEST (which
was previous a hard IRQ) and future events relating to pairing/bonding.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Prior to this change machine.mem32['foo'] (or using any other non-integer
subscript) could result in a fault due to 'foo' being interpreted as an
integer. And when writing code it's hard to tell if the fault is due to a
bad subscript type, or an integer subscript that specifies an invalid
memory address.
The type of the object used in the subscript is now tested to be an
integer by using mp_obj_get_int_truncated instead of
mp_obj_int_get_truncated. The performance hit of this change is minimal,
and machine.memX objects are more for convenience than performance (there
are many other ways to read/write memory in a faster way),
Fixes issue #6588.
Add working example code to provide a starting point for users with files
that they can just copy, and include the modules in the coverage test to
verify the complete user C module build functionality. The cexample module
uses the code originally found in cmodules.rst, which has been updated to
reflect this and partially rewritten with more complete information.
Support building .cpp files and linking them into the micropython
executable in a way similar to how it is done for .c files. The main
incentive here is to enable user C modules to use C++ files (which are put
in SRC_MOD_CXX by py.mk) since the core itself does not utilize C++.
However, to verify build functionality a unix overage test is added. The
esp32 port already has CXXFLAGS so just add the user modules' flags to it.
For the unix port use a copy of the CFLAGS but strip the ones which are not
usable for C++.
This is a generally useful feature and because it's part of the object
model it cannot be added at runtime by some loadable Python code, so enable
it on the standard unix build.
It requires mp_hal_time_ns() to be provided by a port. This function
allows very accurate absolute timestamps.
Enabled on unix, windows, stm32, esp8266 and esp32.
Signed-off-by: Damien George <damien@micropython.org>
And enable this feature on unix, the coverage variant. The .exp test file
is needed so the test can run on CPython versions prior to "@=" operator
support.
Signed-off-by: Damien George <damien@micropython.org>
To portably get the Epoch. This is simply aliased to localtime() on ports
that are not timezone aware.
Signed-off-by: Damien George <damien@micropython.org>
This allows `ble.active(1)` to fail correctly if the HCI controller is
unavailable.
It also avoids an infine loop in the NimBLE event handler where NimBLE
doesn't correctly detect that the HCI controller is unavailable and keeps
trying to reset.
Furthermore, it fixes an issue where GATT service registrations were left
allocated, which led to a bad realloc if the stack was activated multiple
times.
This commit adds support for using Bluetooth on the unix port via a H4
serial interface (distinct from a USB dongle), with both BTstack and NimBLE
Bluetooth stacks.
Note that MICROPY_PY_BLUETOOTH is now disabled for the coverage variant.
Prior to this commit Bluetooth was anyway not being built on Travis because
libusb was not detected. But now that bluetooth works in H4 mode it will
be built, and will lead to a large decrease in coverage because Bluetooth
tests cannot be run on Travis.
Previously the interaction between the different layers of the Bluetooth
stack was different on each port and each stack. This commit defines
common interfaces between them and implements them for cyw43, btstack,
nimble, stm32, unix.
By setting MICROPY_EPOCH_IS_1970 a port can opt to use 1970/1/1 as the
Epoch for timestamps returned by stat(). And this setting is enabled on
the unix and windows ports because that's what they use.
Signed-off-by: Damien George <damien@micropython.org>
On 32-bit builds these stat fields will overflow a small-int, so use
mp_obj_new_int_from_uint to construct the int object.
Signed-off-by: Damien George <damien@micropython.org>