Recent gcc versions (at least 9.1) give a warning about using "sp" in the
clobber list. Such code is removed by this patch. A dedicated function is
instead used to set SP and branch to the bootloader so the code has full
control over what happens.
Fixes issue #4785.
This also fixes deleting the PPP task, since eTaskGetState() never returns
eDeleted.
A limitation with this patch: once the PPP is deactivated (ppp.active(0))
it cannot be used again. A new PPP instance must be created instead.
The user can now select their own package index by either passing the "-i"
command line option, or setting the upip.index_urls variable (before doing
an install).
The https://micropython.org/pi package index hosts packages from
micropython-lib and will be searched first when installing a package. If a
package is not found here then it will fallback to PyPI.
This allows figuring out the number of bytes in the memoryview object as
len(memview) * memview.itemsize.
The feature is enabled via MICROPY_PY_BUILTINS_MEMORYVIEW_ITEMSIZE and is
disabled by default.
The original code called setsockopt(SO_RCVTIMEO/SO_SNDTIMEO) with NULL
timeout structure argument, which is an illegal usage of that function.
The old code also didn't validate the return value of setsockopt, missing
the bug completely.
Before this change, if the USB was reconnected it was possible that some
characters in the TX buffer were retransmitted because tx_buf_ptr_out and
tx_buf_ptr_out_shadow were reset while tx_buf_ptr_in wasn't. That
behaviour is fixed here by retaining the TX buffer state across reconnects.
Fixes issue #4761.
The new function factory_reset_make_files() populates the given filesystem
with the default factory files. It is defined with weak linkage so it can
be overridden by a board.
This commit also brings some minor user-facing changes:
- boot.py is now no longer created unconditionally if it doesn't exist, it
is now only created when the filesystem is formatted and the other files
are populated (so, before, if the user deleted boot.py it would be
recreated at next boot; now it won't be).
- pybcdc.inf and README.txt are only created if the board has USB, because
they only really make sense if the filesystem is exposed via USB.
It's more common to need non-blocking behaviour when reading from a UART,
rather than having a large timeout like 1000ms (the original behaviour).
With a large timeout it's 1) likely that the function will read forever if
characters keep trickling it; or 2) the function will unnecessarily wait
when characters come sporadically, eg at a REPL prompt.
Prior to this commit, building the unix port with `DEBUG=1` and
`-finstrument-functions` the compilation would fail with an error like
"control reaches end of non-void function". This change fixes this by
removing the problematic "if (0)" branches. Not all branches affect
compilation, but they are all removed for consistency.
- IBK-BLYST-NANO: Breakout board
- IDK-BLYST-NANO: DevKit board with builtin IDAP-M CMSIS-DAP Debug JTAG,
RGB led
- BLUEIO-TAG-EVIM: Sensor tag board (environmental sensor
(T, H, P, Air quality) + 9 axis motion sensor)
Also, the LED module has been updated to support individual base level
configuration of each LED. If set, this will be used instead of the
common configuration, MICROPY_HW_LED_PULLUP. The new configuration,
MICROPY_HW_LEDX_LEVEL, where X is the LED number can be used to set
the base level of the specific LED.
The alternate function pin allocations are different to other NUCLEO-144
boards. This is because the STM32F413 has a very high peripheral count:
10x UART, 5x SPI, 3x I2C, 3x CAN. The pinout was chosen to expose all
these devices on separate pins except CAN3 which shares a pin with UART1
and SPI1 which shares pins with DAC.
Includes:
- Support for CAN3.
- Support for UART9 and UART10.
- stm32f413xg.ld and stm32f413xh.ld linker scripts.
- stm32f413_af.csv alternate function mapping.
- startup_stm32f413xx.s because F413 has different interrupt vector table.
- Memory configuration with: 240K filesystem, 240K heap, 16K stack.
This patch makes pllvalues.py generate two tables: one for when HSI is used
and one for when HSE is used. The correct table is then selected at
compile time via the existing MICROPY_HW_CLK_USE_HSI.
With this change, @micropython.asm_thumb functions will work on standard
ARM processors (that are in ARM state by default), in scripts and
precompiled .mpy files.
Addresses issue #4675.
When building with link time optimization enabled it is possible both
gc_collect() and gc_collect_regs_and_stack() get inlined into gc_alloc()
which can result in the regs variable being pushed on the stack earlier
than some of the registers. Depending on the calling convention, those
registers might however contain pointers to blocks which have just been
allocated in the caller of gc_alloc(). Then those pointers end up higher on
the stack than regs, aren't marked by gc_collect_root() and hence get
sweeped, even though they're still in use.
As reported in #4652 this happened for in 32-bit msvc release builds:
mp_lexer_new() does two consecutive allocations and the latter triggered a
gc_collect() which would sweep the memory of the first allocation again.
Otherwise mp_interrupt_char will have a value of zero on start up (because
it's in the BSS) and a KeyboardInterrupt may be raised during start up.
For example this can occur if there is a UART attached to the REPL which
sends spurious null bytes when the device turns on.
So that boot.py and/or main.py can be frozen (either as STR or MPY) in the
same way that other scripts are frozen. Frozen scripts have preference to
scripts in the VFS.