This patch gets full function argument passing working with native
emitter. Includes named args, keyword args, default args, var args
and var keyword args. Fully Python compliant.
It reuses the bytecode mp_setup_code_state function to do all the hard
work. This function is slightly adjusted to accommodate native calls,
and the native emitter is forced a bit to emit similar prelude and
code-info as bytecode.
Previous patch c38dc3ccc7 allowed any
object to be compared with any other, using pointer comparison for a
fallback. As such, existing code which checked for this case is no
longer needed.
This saves a lot of RAM for 2 reasons:
1. For functions that don't have default values, var args or var kw
args (which is a large number of functions in the general case), the
mp_obj_fun_bc_t type now fits in 1 GC block (previously needed 2 because
of the extra pointer to point to the arg_names array). So this saves 16
bytes per function (32 bytes on 64-bit machines).
2. Combining separate memory regions generally saves RAM because the
unused bytes at the end of the GC block are saved for 1 of the blocks
(since that block doesn't exist on its own anymore). So generally this
saves 8 bytes per function.
Tested by importing lots of modules:
- 64-bit Linux gave about an 8% RAM saving for 86k of used RAM.
- pyboard gave about a 6% RAM saving for 31k of used RAM.
Stack is full descending and must be 8-byte aligned. It must start off
pointing to just above the last byte of RAM.
Previously, stack started pointed to last byte of RAM (eg 0x2001ffff)
and so was not 8-byte aligned. This caused a bug in combination with
alloca.
This patch also updates some debug printing code.
Addresses issue #872 (among many other undiscovered issues).
Code-info size, block name, source name, n_state and n_exc_stack now use
variable length encoded uints. This saves 7-9 bytes per bytecode
function for most functions.
Because (for Thumb) a function pointer has the LSB set, pointers to
dynamic functions in RAM (eg native, viper or asm functions) were not
being traced by the GC. This patch is a comprehensive fix for this.
Addresses issue #820.
Such mechanism is important to get stable Python functioning, because Python
function calling is handled with C stack. The idea is to sprinkle
STACK_CHECK() calls in places where there can be C recursion.
TODO: Add more STACK_CHECK()'s.
This patch simplifies the glue between native emitter and runtime,
and handles viper code like inline assember: return values are
converted to Python objects.
Fixes issue #531.
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
alloca() is declared in alloca.h which als happens to be included by stdlib.h.
On mingw however it resides in malloc.h only.
So if we include alloca.h directly, and add an alloca.h for mingw in it's port
directory we can get rid of the mingw-specific define to include malloc.h
and the other ports are happy as well.
These are to assist in writing native C functions that take positional
and keyword arguments. mp_arg_check_num is for just checking the
number of arguments is correct. mp_arg_parse_all is for parsing
positional and keyword arguments with default values.
When querying an object that supports the buffer protocol, that object
must now return a typecode (as per binary.[ch]). This does not have to
be honoured by the caller, but can be useful for determining element
size.
This follows pattern already used for objtuple, etc.: objfun.h's content
is not public - each and every piece of code should not have access to it.
It's not private either - with out architecture and implementation language
(C) it doesn't make sense to keep implementation of each object strictly
private and maintain cumbersome accessors. It's "local" - intended to be
used by a small set of "friend" (in C++ terms) objects.
Improved the Thumb assembler back end. Added many more Thumb
instructions to the inline assembler. Improved parsing of assembler
instructions and arguments. Assembler functions can now be passed the
address of any object that supports the buffer protocol (to get the
address of the buffer). Added an example of how to sum numbers from
an array in assembler.
This simplifies the compiler a little, since now it can do 1 pass over
a function declaration, to determine default arguments. I would have
done this originally, but CPython 3.3 somehow had the default keyword
args compiled before the default position args (even though they appear
in the other order in the text of the script), and I thought it was
important to have the same order of execution when evaluating default
arguments. CPython 3.4 has changed the order to the more obvious one,
so we can also change.
Finishes addressing issue #424.
In the end this was a very neat refactor that now makes things a lot
more consistent across the py code base. It allowed some
simplifications in certain places, now that everything is a dict object.
Also converted builtins tables to dictionaries. This will be useful
when we need to turn builtins into a proper module.
Pretty much everyone needs to include map.h, since it's such an integral
part of the Micro Python object implementation. Thus, the definitions
are now in obj.h instead. map.h is removed.
Mostly just a global search and replace. Except rt_is_true which
becomes mp_obj_is_true.
Still would like to tidy up some of the names, but this will do for now.
Rationale: setting up the stack (state for locals and exceptions) is
really part of the "code", it's the prelude of the function. For
example, native code adjusts the stack pointer on entry to the function.
Native code doesn't need to know n_state for any other reason. So
putting the state size in the bytecode prelude is sensible.
It reduced ROM usage on STM by about 30 bytes :) And makes it easier to
pass information about the bytecode between functions.
mp_module_obj_t can now be put in ROM.
Configuration of float type is now similar to longint: can now choose
none, float or double as the implementation.
math module has basic math functions. For STM port, these are not yet
implemented (they are just stub functions).
This commit also introduces board directories and moves board
specific config into the appropriate board directory.
boards/stm32f4xx-af.csv was extracted from the STM32F4xx datasheet
and hand-tweaked.
make-pins.py takes boards/stm32f4xx-af.csv, boards/stm32f4xx-prefix.c,
and boards/BOARD-NAME/pins.csv as input and generates the file
build/pins_BOARD_NAME.c
The generated pin file for PYBOARD4 looks like this:
https://gist.github.com/dhylands/9063231
The generated pins file includes all of the supported alternate
functions, and includes upsupported alternate functions as comments.
See the commnet block at the top of stm/pin_map.c for details on
how to use the pin mapper.
I also went ahead and modified stm/gpio.c to use the pin mapper.
Each built-in exception is now a type, with base type BaseException.
C exceptions are created by passing a pointer to the exception type to
make an instance of. When raising an exception from the VM, an
instance is created automatically if an exception type is raised (as
opposed to an exception instance).
Exception matching (RT_BINARY_OP_EXCEPTION_MATCH) is now proper.
Handling of parse error changed to match new exceptions.
mp_const_type renamed to mp_type_type for consistency.
Ultimately all static strings should be qstr. This entry in the type
structure is only used for printing error messages (to tell the type of
the bad argument), and printing objects that don't supply a .print method.
Some tools do not support local/static symbols (one example is GNU ld map file).
Exposing all functions will allow to do detailed size comparisons, etc.
Also, added bunch of statics where they were missing, and replaced few identity
functions with global mp_identity().
Passing keyword arguments to a native function now no longer requires
heap memory. The kw_args map is created on the stack using the args
array as the table.
TODO: Decide if we really need separate bytecode for creating functions
with default arguments - we would need same for closures, then there're
keywords arguments too. Having all combinations is a small exponential
explosion, likely we need just 2 cases - simplest (no defaults, no kw),
and full - defaults & kw.
Change state layout in VM so the stack starts at state[0] and grows
upwards. Locals are at the top end of the state and number downwards.
This cleans up a lot of the interface connecting the VM to C: now all
functions that take an array of Micro Python objects are in order (ie no
longer in reverse).
Also clean up C API with keyword arguments (call_n and call_n_kw
replaced with single call method that takes keyword arguments). And now
make_new takes keyword arguments.
emitnative.c has not yet been changed to comply with the new order of
stack layout.