The CI scripts were using a PPA to get a backported version of uncrustify
on Ubuntu 20.04. However, this causes CI to intermittently fail due to
connection issues to launchpad.net or the key server.
Ubuntu 22.04 has a newer version of uncrustify removing the need for the
PPA. Ubuntu 22.04 is now in beta on GitHub actions, so it can be used.
Signed-off-by: David Lechner <david@pybricks.com>
Updates the Zephyr port build instructions and CI to use the latest Zephyr
release tag.
Tested on frdm_k64f.
Signed-off-by: Maureen Helm <maureen.helm@intel.com>
This tests the build when -O2 is used, which can lead to additional
compiler analysis and warnings.
Signed-off-by: Damien George <damien@micropython.org>
This enables the new `-X realtime` runtime option when running tests on
macOS. This causes MicroPython to configure all threads to be high
priority so that they are allowed to use high precision timers. This
makes tests that depend on the passage of time more likely to succeed.
CI tests that were disabled because of this are now enabled again.
Signed-off-by: David Lechner <david@pybricks.com>
Tested on PYBV10 and PYBD_SF6, with MBOOT_FSLOAD enabled and programming
new firmware from a .dfu.gz file stored on the SD card.
Signed-off-by: Damien George <damien@micropython.org>
As a prerequisite to upgrading to Zephyr v2.7.0, upgrade CI to use
Zephyr docker image v0.21.0. In particular, this is needed to pick up a
newer CMake version because Zephyr v2.7.0 increased the minimum CMake
version required to 3.20.0.
Signed-off-by: Maureen Helm <maureen.helm@intel.com>
This is to make the builds for all nucleo/discovery boards uniform, so they
can be treated the same by the auto build scripts.
The CI script is updated to explicitly enable mboot and packing, to test
these features.
Signed-off-by: Damien George <damien@micropython.org>
There is no release of IDF v4.4 yet but master is now on v5.0-dev so a
specific commit must be chosen to stick to v4.4.
Signed-off-by: Damien George <damien@micropython.org>
IDF v4.4 does not have an official release so for now use the latest
master. Also remove building GENERIC with no options (all the other boards
are no-option builds), to keep CI time reasonable.
Signed-off-by: Damien George <damien@micropython.org>
Coverage calculated by Codecov has the same reliability/deterministic
issues as Coveralls did, so the problem is likely to do with the output of
lcov/gcov, rather than the analysis and display of the data.
Switch from lcov to gcov for data generation to try and simplify this
process of computing coverage.
Signed-off-by: Damien George <damien@micropython.org>
Following on from ef16834887de02cbddf414b560e5a2af9cae4b16, this adds a
coverage build and running of the test suite on an ARM 32-bit Linux-based
architecture.
Signed-off-by: Damien George <damien@micropython.org>
This adds a coverage build and running of the test suite on a MIPS 32-bit
big endian architecture. It uses the feature of qemu to execute foreign
code as though it were native to the system (using qemu user mode). The
code compiled for MIPS will run under the qemu VM, but all syscalls made by
this code go to the host (Linux) system.
See related #7268 and #7273.
Signed-off-by: Damien George <damien@micropython.org>
It's a bit of a pitfall with user C modules that including them in the
build does not automatically enable them. This commit changes the docs and
examples for user C modules to encourage writers of user C modules to
enable them unconditionally. This makes things simpler and covers most use
cases.
See discussion in issue #6960, and also #7086.
Signed-off-by: Damien George <damien@micropython.org>