Allows assigning attributes on class instances that implement their own
__setattr__. Both object.__setattr__ and super(A, b).__setattr__ will work
with this commit.
This makes the loading of viper-code-with-relocations a bit neater and
easier to understand, by treating the rodata/bss like a special object to
be loaded into the constant table (which is how it behaves).
We don't want to add a feature flag to .mpy files that indicate float
support because it will get complex and difficult to use. Instead the .mpy
is built using whatever precision it chooses (float or double) and the
native glue API will convert between this choice and what the host runtime
actually uses.
This commit adds a new tool called mpy_ld.py which is essentially a linker
that builds .mpy files directly from .o files. A new header file
(dynruntime.h) and makefile fragment (dynruntime.mk) are also included
which allow building .mpy files from C source code. Such .mpy files can
then be dynamically imported as though they were a normal Python module,
even though they are implemented in C.
Converting .o files directly (rather than pre-linked .elf files) allows the
resulting .mpy to be more efficient because it has more control over the
relocations; for example it can skip PLT indirection. Doing it this way
also allows supporting more architectures, such as Xtensa which has
specific needs for position-independent code and the GOT.
The tool supports targets of x86, x86-64, ARM Thumb and Xtensa (windowed
and non-windowed). BSS, text and rodata sections are supported, with
relocations to all internal sections and symbols, as well as relocations to
some external symbols (defined by dynruntime.h), and linking of qstrs.
Implements text, rodata and bss generalised relocations, as well as generic
qstr-object linking. This allows importing dynamic native modules on all
supported architectures in a unified way.
With the memcpy() call placed last it avoids the effects of registers
clobbering. It's definitely effective in non-inlined functions, but even
here it is still making a small difference. For example, on stm32, this
saves an extra `ldr` instruction to load `o->vstr` after the memcpy()
returns.
The string length being longer than the allowed qstr length can happen in
many locations, for example in the parser with very long variable names.
Without an explicit check that the length is within range (as done in this
patch) the code would exhibit crashes and strange behaviour with truncated
strings.
This commit adds a sys.implementation.mpy entry when the system supports
importing .mpy files. This entry is a 16-bit integer which encodes two
bytes of information from the header of .mpy files that are supported by
the system being run: the second and third bytes, .mpy version, and flags
and native architecture. This allows determining the supported .mpy file
dynamically by code, and also for the user to find it out by inspecting
this value. It's further possible to dynamically detect if the system
supports importing .mpy files by `hasattr(sys.implementation, 'mpy')`.
Replace the is_running field with a tri-state variable to indicate
running/not-running/pending-exception.
Update tests to cover the various cases.
This allows cancellation in uasyncio even if the coroutine hasn't been
executed yet. Fixes#5242
This wasn't necessary as the wrapped function already has a reference to
its globals. But it had a dual purpose of tracking whether the function
was currently running, so replace it with a bool.
runtime0.h is part of the MicroPython ABI so it's simpler if it's
independent of config options, like MICROPY_PY_REVERSE_SPECIAL_METHODS.
What's effectively done here is to move MP_BINARY_OP_DIVMOD and
MP_BINARY_OP_CONTAINS up in the enum, then remove the #if
MICROPY_PY_REVERSE_SPECIAL_METHODS conditional.
Without this change .mpy files would need to have a feature flag for
MICROPY_PY_REVERSE_SPECIAL_METHODS (when embedding native code that uses
this enum).
This commit has no effect when MICROPY_PY_REVERSE_SPECIAL_METHODS is
disabled. With this option enabled this commit reduces code size by about
60 bytes.
For consistency with "umachine". Now that weak links are enabled
by default for built-in modules, this should be a no-op, but allows
extension of the bluetooth module by user code.
Also move registration of ubluetooth to objmodule rather than
port-specific.
This commit implements automatic module weak links for all built-in
modules, by searching for "ufoo" in the built-in module list if "foo"
cannot be found. This means that all modules named "ufoo" are always
available as "foo". Also, a port can no longer add any other weak links,
which makes strict the definition of a weak link.
It saves some code size (about 100-200 bytes) on ports that previously had
lots of weak links.
Some changes from the previous behaviour:
- It doesn't intern the non-u module names (eg "foo" is not interned),
which saves code size, but will mean that "import foo" creates a new qstr
(namely "foo") in RAM (unless the importing module is frozen).
- help('modules') no longer lists non-u module names, only the u-variants;
this reduces duplication in the help listing.
Weak links are effectively the same as having a set of symbolic links on
the filesystem that is searched last. So an "import foo" will search
built-in modules first, then all paths in sys.path, then weak links last,
importing "ufoo" if it exists. Thus a file called "foo.py" somewhere in
sys.path will still have precedence over the weak link of "foo" to "ufoo".
See issues: #1740, #4449, #5229, #5241.
When loading a manifest file, e.g. by include(), it will chdir first to the
directory of that manifest. This means that all file operations within a
manifest are relative to that manifest's location.
As a consequence of this, additional environment variables are needed to
find absolute paths, so the following are added: $(MPY_LIB_DIR),
$(PORT_DIR), $(BOARD_DIR). And rename $(MPY) to $(MPY_DIR) to be
consistent.
Existing manifests are updated to match.
This introduces a new build variable FROZEN_MANIFEST which can be set to a
manifest listing (written in Python) that describes the set of files to be
frozen in to the firmware.
Instead of encoding 4 zero bytes as placeholders for the simple_name and
source_file qstrs, and storing the qstrs after the bytecode, store the
qstrs at the location of these 4 bytes. This saves 4 bytes per bytecode
function stored in a .mpy file (for example lcd160cr.mpy drops by 232
bytes, 4x 58 functions). And resulting code size is slightly reduced on
ports that use this feature.
In which case place the native function prelude in a bytes object, linked
from the const_table of that function. An architecture should define
N_PRELUDE_AS_BYTES_OBJ to 1 before including py/emitnative.c to emit
correct machine code, then enable MICROPY_EMIT_NATIVE_PRELUDE_AS_BYTES_OBJ
so the runtime can correctly handle the prelude being in a bytes object.