During the initial handshake or subsequent renegotiation, the protocol
might need to read in order to write (or conversely to write in order
to read). It might be blocked from doing so by the state of the
underlying socket (i.e. there is no data to read, or there is no space
to write).
The library indicates this condition by returning one of the errors
`MBEDTLS_ERR_SSL_WANT_READ` or `MBEDTLS_ERR_SSL_WANT_WRITE`. When that
happens, we need to enforce that the next poll operation only considers
the direction that the library indicated.
In addition, mbedtls does its own read buffering that we need to take
into account while polling, and we need to save the last error between
read()/write() and ioctl().
Instead of being an explicit field, it's now a slot like all the other
methods.
This is a marginal code size improvement because most types have a make_new
(100/138 on PYBV11), however it improves consistency in how types are
declared, removing the special case for make_new.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The goal here is to remove a slot (making way to turn make_new into a slot)
as well as reduce code size by the ~40 references to mp_identity_getiter
and mp_stream_unbuffered_iter.
This introduces two new type flags:
- MP_TYPE_FLAG_ITER_IS_ITERNEXT: This means that the "iter" slot in the
type is "iternext", and should use the identity getiter.
- MP_TYPE_FLAG_ITER_IS_CUSTOM: This means that the "iter" slot is a pointer
to a mp_getiter_iternext_custom_t instance, which then defines both
getiter and iternext.
And a third flag that is the OR of both, MP_TYPE_FLAG_ITER_IS_STREAM: This
means that the type should use the identity getiter, and
mp_stream_unbuffered_iter as iternext.
Finally, MP_TYPE_FLAG_ITER_IS_GETITER is defined as a no-op flag to give
the default case where "iter" is "getiter".
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Add cert_reqs and cadata keyword-args to ssl.wrap_socket() and
ssl.CERT_NONE, ssl.CERT_OPTIONAL, ssl.CERT_REQUIRED constants to allow
certificate validation.
CPython doesn't accept cadata in ssl.wrap_socket(), but it does in
SSLContext.load_verify_locations(), so we use this name to at least match
the same name in load_verify_locations().
Add docs for these new arguments, as well as docs for the existing
server_hostname argument which is important for certificate validation.
Tests are added as well.
Signed-off-by: Carlos Gil <carlosgilglez@gmail.com>
Otherwise this is essentially an infinite loop on ports that do not use
interrupts to service network interfaces.
Signed-off-by: Andrew Leech <andrew@alelec.net>
It's no longer needed because this macro is now processed after
preprocessing the source code via cpp (in the qstr extraction stage), which
means unused MP_REGISTER_MODULE's are filtered out by the preprocessor.
Signed-off-by: Damien George <damien@micropython.org>
This commit adds human readable error messages when mbedtls or axtls raise
an exception. Currently often just an EIO error is raised so the user is
lost and can't tell whether it's a cert error, buffer overrun, connecting
to a non-ssl port, etc. The axtls and mbedtls error raising in the ussl
module is modified to raise:
OSError(-err_num, "error string")
For axtls a small error table of strings is added and used for the second
argument of the OSErrer. For mbedtls the code uses mbedtls' built-in
strerror function, and if there is an out of memory condition it just
produces OSError(-err_num). Producing the error string for mbedtls is
conditional on them being included in the mbedtls build, via
MBEDTLS_ERROR_C.
For this, add wrap_socket(do_handshake=False) param. CPython doesn't have
such a param at a module's global function, and at SSLContext.wrap_socket()
it has do_handshake_on_connect param, but that uselessly long.
Beyond that, make write() handle not just MBEDTLS_ERR_SSL_WANT_WRITE, but
also MBEDTLS_ERR_SSL_WANT_READ, as during handshake, write call may be
actually preempted by need to read next handshake message from peer.
Likewise, for read(). And even after the initial negotiation, situations
like that may happen e.g. with renegotiation. Both
MBEDTLS_ERR_SSL_WANT_READ and MBEDTLS_ERR_SSL_WANT_WRITE are however mapped
to the same None return code. The idea is that if the same read()/write()
method is called repeatedly, the progress will be made step by step anyway.
The caveat is if user wants to add the underlying socket to uselect.poll().
To be reliable, in this case, the socket should be polled for both POLL_IN
and POLL_OUT, as we don't know the actual expected direction. But that's
actually problematic. Consider for example that write() ends with
MBEDTLS_ERR_SSL_WANT_READ, but gets converted to None. We put the
underlying socket on pull using POLL_IN|POLL_OUT but that probably returns
immediately with POLL_OUT, as underlyings socket is writable. We call the
same ussl write() again, which again results in MBEDTLS_ERR_SSL_WANT_READ,
etc. We thus go into busy-loop.
So, the handling in this patch is temporary and needs fixing. But exact way
to fix it is not clear. One way is to provide explicit function for
handshake (CPython has do_handshake()), and let *that* return distinct
codes like WANT_READ/WANT_WRITE. But as mentioned above, past the initial
handshake, such situation may happen again with at least renegotiation. So
apparently, the only robust solution is to return "out of bound" special
sentinels like WANT_READ/WANT_WRITE from read()/write() directly. CPython
throws exceptions for these, but those are expensive to adopt that way for
efficiency-conscious implementation like MicroPython.
This header is deprecated as of mbedtls 2.8.0, as shipped with Ubuntu
18.04. Leads to #warning which is promoted to error with uPy compile
options.
Note that the current version of mbedtls is 2.14 at the time of writing.
The underlying socket can handling polling, and any other transparent ioctl
requests. Note that CPython handles the case of polling an ssl object by
polling the file descriptor of the underlying socket file, and that
behaviour is emulated here.
With this patch objects are only checked that they have the stream protocol
at the start of their use as a stream, and afterwards the efficient
mp_get_stream() helper is used to extract the stream protocol C methods.
If mbedtls_ctr_drbg_seed() is available in the mbedtls bulid then so should
be mbedtls_entropy_func(). Then it's up to the port to configure a valid
entropy source, eg via MBEDTLS_ENTROPY_HARDWARE_ALT.
Otherwise the "sock" member may have an undefined value if wrap_socket
fails with an exception and exits early, and then if the finaliser runs it
will try to close an invalid stream object.
Fixes issue #3828.
This patch moves the implementation of stream closure from a dedicated
method to the ioctl of the stream protocol, for each type that implements
closing. The benefits of this are:
1. Rounds out the stream ioctl function, which already includes flush,
seek and poll (among other things).
2. Makes calling mp_stream_close() on an object slightly more efficient
because it now no longer needs to lookup the close method and call it,
rather it just delegates straight to the ioctl function (if it exists).
3. Reduces code size and allows future types that implement the stream
protocol to be smaller because they don't need a dedicated close method.
Code size reduction is around 200 bytes smaller for x86 archs and around
30 bytes smaller for the bare-metal archs.
Per the comment found here
https://github.com/micropython/micropython-esp32/issues/209#issuecomment-339855157,
this patch adds finaliser code to prevent memory leaks from ussl objects,
which is especially useful when memory for a ussl context is allocated
outside the uPy heap. This patch is in-line with the finaliser code found
in many modsocket implementations for various ports.
This feature is configured via MICROPY_PY_USSL_FINALISER and is disabled by
default because there may be issues using it when the ussl state *is*
allocated on the uPy heap, rather than externally.
Header files that are considered internal to the py core and should not
normally be included directly are:
py/nlr.h - internal nlr configuration and declarations
py/bc0.h - contains bytecode macro definitions
py/runtime0.h - contains basic runtime enums
Instead, the top-level header files to include are one of:
py/obj.h - includes runtime0.h and defines everything to use the
mp_obj_t type
py/runtime.h - includes mpstate.h and hence nlr.h, obj.h, runtime0.h,
and defines everything to use the general runtime support functions
Additional, specific headers (eg py/objlist.h) can be included if needed.
With MBEDTLS_DEBUG_C disabled the function mbedtls_debug_set_threshold()
doesn't exist. There's also no need to call mbedtls_ssl_conf_dbg() so a
few bytes can be saved on disabling that and not needing the mbedtls_debug
callback.
Its addition was due to an early exploration on how to add CPython-like
stream interface. It's clear that it's not needed and just takes up
bytes in all ports.