The keyword "af" has been deprecated for some time and "alt" should be used
instead (but "af" still works).
Signed-off-by: Damien George <damien@micropython.org>
This allows encoding things (eg a Basic-Auth header for a request) without
slicing the \n from the string, which allocates additional memory.
Co-authored-by: David Lechner <david@lechnology.com>
The new ADC methods are: init(), read_uv() and block().
The new ADCBlock class has methods: init() and connect().
See related discussions in #3943, #4213.
Signed-off-by: Damien George <damien@micropython.org>
Some devices, eg BNO055, can stretch SCL for a long time, so make the
default large to accommodate them. 50ms matches the current default for
stm32 hardware I2C .
Signed-off-by: Damien George <damien@micropython.org>
The bit-bang implementation was replaced with the RMT implementation in
599b61c086. This commit brings back that
bit-bang code, and allows it to be selected via the new static method:
esp32.RMT.bitstream_channel(None)
The bit-bang implementation may be useful if the RMT needs to be used for
something else, or if bit-banging is more stable in certain applications.
Signed-off-by: Damien George <damien@micropython.org>
And how they relate to MicroPython. As these features are implemented (or
the decision is made to not implement them) the tables can be updated to
document the differences between MicroPython and standard Python.
Save and restore the same duty cycle when the frequency (or frequency
resolution) is changed. This allows a smooth frequency change.
Also update the esp32 PWM quickref to be clearer.
If MICROPY_PY_SYS_PATH_ARGV_DEFAULTS is enabled (which it is by default)
then sys.path and sys.argv will be initialised and populated with default
values. This keeps all bare-metal ports aligned.
Signed-off-by: Damien George <damien@micropython.org>
The methods duty_u16() and duty_ns() are implemented to match the existing
docs. The duty will remain the same when the frequency is changed.
Standard ESP32 as well as S2, S3 and C3 are supported.
Thanks to @kdschlosser for the fix for rounding in resolution calculation.
Documentation is updated and examples expanded for esp32, including the
quickref and tutorial. Additional notes are added to the machine.PWM docs
regarding limitations of hardware PWM.
The third and fourth parameters in display.rect() and display.fill_rect()
are not x,y coordinates, but are instead width,height values. Update the
comment after the example to show the correct x,y coordinates of the bottom
right corner of each rectangle, respectively.
This commit swaps the dimensions of the `framebuffer.FrameBuffer` in the
docs example from 10x100 to 100x10 pixels to avoid clipping.
This is done to better fit the subsequent example code, which writes
text of size 96x8 followed by a 96x1 horizontal line.
The y coordinate of the horizontal line is also adjusted such that it is
drawn inside of the new canvas bounds.
This commit adds I2S protocol support for the rp2 port:
- I2S API is consistent with STM32 and ESP32 ports
- I2S configurations supported:
- master transmit and master receive
- 16-bit and 32-bit sample sizes
- mono and stereo formats
- sampling frequency
- 3 modes of operation:
- blocking
- non-blocking with callback
- uasyncio
- internal ring buffer size can be tuned
- DMA IRQs are managed on an I2S object basis, allowing other
RP2 entities to use DMA IRQs when I2S is not being used
- MicroPython documentation
- tested on Raspberry Pi Pico development board
- build metric changes for this commit: text(+4552), data(0), bss(+8)
Signed-off-by: Mike Teachman <mike.teachman@gmail.com>
This commit removes all parts of code associated with the existing
MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE optimisation option, including the
-mcache-lookup-bc option to mpy-cross.
This feature originally provided a significant performance boost for Unix,
but wasn't able to be enabled for MCU targets (due to frozen bytecode), and
added significant extra complexity to generating and distributing .mpy
files.
The equivalent performance gain is now provided by the combination of
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE (which has
been enabled on the unix port in the previous commit).
It's hard to provide precise performance numbers, but tests have been run
on a wide variety of architectures (x86-64, ARM Cortex, Aarch64, RISC-V,
xtensa) and they all generally agree on the qualitative improvements seen
by the combination of MICROPY_OPT_LOAD_ATTR_FAST_PATH and
MICROPY_OPT_MAP_LOOKUP_CACHE.
For example, on a "quiet" Linux x64 environment (i3-5010U @ 2.10GHz) the
change from CACHE_MAP_LOOKUP_IN_BYTECODE, to LOAD_ATTR_FAST_PATH combined
with MAP_LOOKUP_CACHE is:
diff of scores (higher is better)
N=2000 M=2000 bccache -> attrmapcache diff diff% (error%)
bm_chaos.py 13742.56 -> 13905.67 : +163.11 = +1.187% (+/-3.75%)
bm_fannkuch.py 60.13 -> 61.34 : +1.21 = +2.012% (+/-2.11%)
bm_fft.py 113083.20 -> 114793.68 : +1710.48 = +1.513% (+/-1.57%)
bm_float.py 256552.80 -> 243908.29 : -12644.51 = -4.929% (+/-1.90%)
bm_hexiom.py 521.93 -> 625.41 : +103.48 = +19.826% (+/-0.40%)
bm_nqueens.py 197544.25 -> 217713.12 : +20168.87 = +10.210% (+/-3.01%)
bm_pidigits.py 8072.98 -> 8198.75 : +125.77 = +1.558% (+/-3.22%)
misc_aes.py 17283.45 -> 16480.52 : -802.93 = -4.646% (+/-0.82%)
misc_mandel.py 99083.99 -> 128939.84 : +29855.85 = +30.132% (+/-5.88%)
misc_pystone.py 83860.10 -> 82592.56 : -1267.54 = -1.511% (+/-2.27%)
misc_raytrace.py 21490.40 -> 22227.23 : +736.83 = +3.429% (+/-1.88%)
This shows that the new optimisations are at least as good as the existing
inline-bytecode-caching, and are sometimes much better (because the new
ones apply caching to a wider variety of map lookups).
The new optimisations can also benefit code generated by the native
emitter, because they apply to the runtime rather than the generated code.
The improvement for the native emitter when LOAD_ATTR_FAST_PATH and
MAP_LOOKUP_CACHE are enabled is (same Linux environment as above):
diff of scores (higher is better)
N=2000 M=2000 native -> nat-attrmapcache diff diff% (error%)
bm_chaos.py 14130.62 -> 15464.68 : +1334.06 = +9.441% (+/-7.11%)
bm_fannkuch.py 74.96 -> 76.16 : +1.20 = +1.601% (+/-1.80%)
bm_fft.py 166682.99 -> 168221.86 : +1538.87 = +0.923% (+/-4.20%)
bm_float.py 233415.23 -> 265524.90 : +32109.67 = +13.756% (+/-2.57%)
bm_hexiom.py 628.59 -> 734.17 : +105.58 = +16.796% (+/-1.39%)
bm_nqueens.py 225418.44 -> 232926.45 : +7508.01 = +3.331% (+/-3.10%)
bm_pidigits.py 6322.00 -> 6379.52 : +57.52 = +0.910% (+/-5.62%)
misc_aes.py 20670.10 -> 27223.18 : +6553.08 = +31.703% (+/-1.56%)
misc_mandel.py 138221.11 -> 152014.01 : +13792.90 = +9.979% (+/-2.46%)
misc_pystone.py 85032.14 -> 105681.44 : +20649.30 = +24.284% (+/-2.25%)
misc_raytrace.py 19800.01 -> 23350.73 : +3550.72 = +17.933% (+/-2.79%)
In summary, compared to MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE, the new
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE options:
- are simpler;
- take less code size;
- are faster (generally);
- work with code generated by the native emitter;
- can be used on embedded targets with a small and constant RAM overhead;
- allow the same .mpy bytecode to run on all targets.
See #7680 for further discussion. And see also #7653 for a discussion
about simplifying mpy-cross options.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Don't want users to accidentally use boot.py (because recovering requires
knowing how to activate safe mode).
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>