Reduces by about a factor of 10 on average the amount of RAM needed to
store the line-number to bytecode map in the bytecode prelude.
Using CPython3.4's stdlib for statistics: previously, an average of
13 bytes were used per (bytecode offset, line-number offset) pair, and
now with this improvement, that's down to 1.3 bytes on average.
Large RAM usage before was due to some very large steps in line numbers,
both from the start of the first line in a function way down in the
file, and also functions that have big comments and/or big strings in
them (both cases were significant).
Although the savings are large on average for the CPython stdlib, it
won't have such a big effect for small scripts used in embedded
programming.
Addresses issue #648.
This may seem a bit of a risky change, in that it may introduce crazy
bugs with respect to volatile variables in the VM loop. But, I think it
should be fine: code_state points to some external memory, so the
compiler should always read/write to that memory when accessing the
ip/sp variables (ie not put them in registers).
Anyway, it passes all tests and improves on all efficiency fronts: about
2-4% faster (64-bit unix), 16 bytes less stack space per call (64-bit
unix) and slightly less executable size (unix and stmhal).
The reason it's more efficient is save_ip and save_sp were volatile
variables, so were anyway stored on the stack (in memory, not regs).
Thus converting them to code_state->{ip, sp} doesn't cost an extra
memory dereference (except maybe to get code_state, but that can be put
in a register and then made more efficient for other uses of it).
Conflicts:
py/vm.c
Fixed stack underflow check. Use UINT_FMT/INT_FMT where necessary.
Specify maximum VM-stack byte size by multiple of machine word size, so
that on 64 bit machines it has same functionality as 32 bit.
This improves stack usage in callers to mp_execute_bytecode2, and is step
forward towards unifying execution interface for function and generators
(which is important because generators don't even support full forms
of arguments passing (keywords, etc.)).
Needed to pop the iterator object when breaking out of a for loop. Need
also to be careful to unwind exception handler before popping iterator.
Addresses issue #635.
This helps the compiler do its optimisation, makes it clear which
variables are local per opcode and which global, and makes it consistent
when extra variables are needed in an opcode (in addition to old obj1,
obj2 pair, for example).
Could also make unum local, but that's for another time.
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
3 emitter functions are needed only for emitcpy, and so we can #if them
out when compiling with emitcpy support.
Also remove unused SETUP_LOOP bytecode.
Closed over variables are now passed on the stack, instead of creating a
tuple and passing that. This way memory for the closed over variables
can be allocated within the closure object itself. See issue #510 for
background.
On stmhal, computed gotos make the binary about 1k bigger, but makes it
run faster, and we have the room, so why not. All tests pass on
pyboard using computed gotos.
Things get tricky when using the nlr code to catch exceptions. Need to
ensure that the variables (stack layout) in the exception handler are
the same as in the bit protected by the exception handler.
Prior to this patch there were a few bugs. 1) The constant
mp_const_MemoryError_obj was being preloaded to a specific location on
the stack at the start of the function. But this location on the stack
was being overwritten in the opcode loop (since it didn't think that
variable would ever be referenced again), and so when an exception
occurred, the variable holding the address of MemoryError was corrupt.
2) The FOR_ITER opcode detection in the exception handler used sp, which
may or may not contain the right value coming out of the main opcode
loop.
With this patch there is a clear separation of variables used in the
opcode loop and in the exception handler (should fix issue (2) above).
Furthermore, nlr_raise is no longer used in the opcode loop. Instead,
it jumps directly into the exception handler. This tells the C compiler
more about the possible code flow, and means that it should have the
same stack layout for the exception handler. This should fix issue (1)
above. Indeed, the generated (ARM) assembler has been checked explicitly,
and with 'goto exception_handler', the problem with &MemoryError is
fixed.
This may now fix problems with rge-sm, and probably many other subtle
bugs yet to show themselves. Incidentally, rge-sm now passes on
pyboard (with a reduced range of integration)!
Main lesson: nlr is tricky. Don't use nlr_push unless you know what you
are doing! Luckily, it's not used in many places. Using nlr_raise/jump
is fine.
Attempt to address issue #386. unique_code_id's have been removed and
replaced with a pointer to the "raw code" information. This pointer is
stored in the actual byte code (aligned, so the GC can trace it), so
that raw code (ie byte code, native code and inline assembler) is kept
only for as long as it is needed. In memory it's now like a tree: the
outer module's byte code points directly to its children's raw code. So
when the outer code gets freed, if there are no remaining functions that
need the raw code, then the children's code gets freed as well.
This is pretty much like CPython does it, except that CPython stores
indexes in the byte code rather than machine pointers. These indices
index the per-function constant table in order to find the relevant
code.
This is necessary to catch all cases where locals are referenced before
assignment. We still keep the _0, _1, _2 versions of LOAD_FAST to help
reduced the byte code size in RAM.
Addresses issue #457.
This simplifies the compiler a little, since now it can do 1 pass over
a function declaration, to determine default arguments. I would have
done this originally, but CPython 3.3 somehow had the default keyword
args compiled before the default position args (even though they appear
in the other order in the text of the script), and I thought it was
important to have the same order of execution when evaluating default
arguments. CPython 3.4 has changed the order to the more obvious one,
so we can also change.
There was thinkos that either send_value or throw_value is specified, but
there were cases with both. Note that send_value is pushed onto generator's
stack - but that's probably only good, because if we throw exception into
gen, it should not ever use send_value, and that will be just extra "assert".
Adding this bytecode allows to remove 4 others related to
function/method calls with * and ** support. Will also help with
bytecodes that make functions/closures with default positional and
keyword args.
Mostly just a global search and replace. Except rt_is_true which
becomes mp_obj_is_true.
Still would like to tidy up some of the names, but this will do for now.
Required to reraise correct exceptions in except block, regardless if more
try blocks with active exceptions happen in the same except block.
P.S. This "automagic reraise" appears to be quite wasteful feature of Python
- we need to save pending exception just in case it *might* be reraised.
Instead, programmer could explcitly capture exception to a variable using
"except ... as var", and reraise that. So, consider disabling argless raise
support as an optimization.
The compiler allocates 7 entries on the stack for a with statement
(following CPython, but probably can be reduced). This is enough for
the method load and call in SETUP_WITH.
Partly (very partly!) addresses issue #386. Most importantly, at the
REPL command line, each invocation does not now lead to increased memory
usage (unless you define a function/lambda).
This reduntant triple is one of the ugliest parts of Python, which they
chickened out to fix in Python3. We really should consider passing just
as single exception instance (without breaking Python-level APIs of course),
but until we do, let's follow CPython layout.
Rationale: setting up the stack (state for locals and exceptions) is
really part of the "code", it's the prelude of the function. For
example, native code adjusts the stack pointer on entry to the function.
Native code doesn't need to know n_state for any other reason. So
putting the state size in the bytecode prelude is sensible.
It reduced ROM usage on STM by about 30 bytes :) And makes it easier to
pass information about the bytecode between functions.
For this, needed to implement DELETE_NAME bytecode (because var bound
in except clause is automatically deleted at its end).
http://docs.python.org/3/reference/compound_stmts.html#except :
"When an exception has been assigned using as target, it is cleared at
the end of the except clause."