The STM32H7xx HAL LPUART AF macros are missing the number, this HAL is the
only one that's inconsistent in the way it defines LPUART AF macros, so we
only need to define them for H7.
Prior to this commit, only sector 0 was erase/write protected, which may
not be enough to protect all of mboot (especially if mboot lives at a
higher address than the start of flash).
This commit makes sure all internal flash sectors that mboot lives in are
protected from erasing and writing. The linker script must define
_mboot_writable_flash_start for this to work.
Signed-off-by: Damien George <damien@micropython.org>
The original ESP32 only supports timer source clock APB so it doesn't need
and doesn't have a clk_src field.
The ESP32C3 supports timer source clock APB and XTAL so it does have a
clk_src field, and this needs to be configured to get the correct period.
Fixes#8084.
Follow up to 8a91c719 to no longer explicitly disable BLE in
mpconfigport.h.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
For STM32L4, hardware I2C can be implemented by using TIMINGR.
This commit enables:
- Use of hardware I2C in machine.I2C.
- Specifying a frequency greater than or equal to 400KHz with pyb.I2C.
For STM32L4 series, the internal sensors are connected to:
- ADC1_IN0: Internal voltage reference
- ADC1_IN17: Temperature sensor
- ADC1_IN18: VBAT battery voltage monitoring
but ADC_CHANNEL_VREFINT, ADC_CHANNEL_VBAT, ADC_CHANNEL_TEMPSENSOR are not
defined as 0, 17, 18.
This commit converts channel 0, 17, 18 to ADC_CHANNEL_x in
adc_get_internal_channel().
Prior to this commit, the actual I2C frequency can be faster than specified
one and it may exceed the I2C's specification for Fast Mode. The frequency
of SCL should be less than or equal to 400KHz in Fast Mode.
This commit fixes this issue for F4 MCUs by rounding up the division in the
frequency calculation.
Excuting the code:
i2c = I2C(1, I2C.CONTROLLER, dma=True)
tmp = i2c.recv(1, i2c_addr)
recv_data = bytearray(56)
i2c.recv(recv_data, i2c_addr)
The second i2c.recv() fails with OSError: [Errno 110] ETIMEDOUT. When
receiving greater than or equal to 2 bytes at first i2c.recv(), the second
i2c.recv() succeeds. This issue does not occur without DMA.
Details of change: when executing I2C with DMA:
- Bit 11 of I2Cx_CR2 (DMA Request Enable) should be 1 to indicate that DMA
transfer is enabled. This bit is set after I2C event interrupt is
enabled in HAL_I2C_Master_Transmit_DMA()/HAL_I2C_Master_Receive_DMA(), so
DMA Request Enable bit might be 0 in IRQHandler.
- In case of data receive:
- When only 1 byte receiption, clear I2Cx_CR1's bit 10 (ACK).
- When only 2 byte receiption, clear I2Cx_CR1's bit 10 (ACK) and set
bit 11 (POS).
- When greater than or equal to 2 byte receiption, bit 12 of I2Cx_CR2
(DMA Last Transfer) should set to generate NACK when DMA transfer
completed.
Otherwise, the I2C bus may be busy after received data from peripheral.
Instead of defining `MICROPY_PY_BTREE` in `mpconfigport.h` we can define
it via CMake similar to how other ports that use Makefiles define it in
`mpconfigport.mk`.
Signed-off-by: David Lechner <david@pybricks.com>
The RT1176 has two cores, but the actual firmware supports only the CM7.
There are currently no good plans on how to use the CM4.
The actual MIMXRT1170_EVK board is on par with the existing MIMXRT boards,
with the following extensions:
- Use 64 MB RAM for the heap.
- Support both LAN interfaces as LAN(0) and LAN(1), with LAN(1)
being the 1GB interface.
The dual LAN port interface can eventually be adapted as well for the
RT1062 MCU.
This work was done in collaboration with @alphaFred.
Avoids the 'warning: Wildcards in project items are not supported'
message from the C++ project system in Visual Studio, while otherwise
remaining completely functional.
A board can now name the CDC ports, eg:
#define MICROPY_HW_USB_CDC_NUM (3)
#define MICROPY_HW_USB_INTERFACE_CDC0_STRING "REPL"
#define MICROPY_HW_USB_INTERFACE_CDC1_STRING "GDB Server"
#define MICROPY_HW_USB_INTERFACE_CDC2_STRING "UART Port"
Signed-off-by: Damien George <damien@micropython.org>
The PWM module now detects if the pin is open drain and if so switches it
to hardware open drain before starting the PWM.
The code that was explicitly turning off the open drain output during PWM
is also removed.
Together these changes allow driving external transistor high-current
switches with PWM.
Signed-off-by: Trammell hudson <hudson@trmm.net>
Changes in this commit:
- Change file system size from 128KB to 64KB in ra6m1_ek.ld.
- Change EK-RA6M1's file system size in renesas-ra port document.
Signed-off-by: Takeo Takahashi <takeo.takahashi.xv@renesas.com>
Changes in this commit:
- Add FLASH_FS region to linker script.
- Add flash storage start & end symbols to linker script.
- Use flash storage start & end symbols in flashbdev.c
Signed-off-by: Takeo Takahashi <takeo.takahashi.xv@renesas.com>
App the mp_ prefix to usbd_ symbols and files which are defined here and
not in TinyUSB.
rp2 only for now. This includes some groundwork for dynamic USB devices
(defined in Python).
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
Seems unused outside of spi.c, spi_obj[] array is the expected way to
iterate these.
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
This changes the CustomEvent for stdout to use the existing `detail`
property of CustomEvent instead of adding a `data` property.
Signed-off-by: David Lechner <david@pybricks.com>
mip-cmdline adds command-line support to mip, useful for the unix port, via
micropython -m mip ...
Signed-off-by: Damien George <damien@micropython.org>
This commit executes __WFI() on core 0 only to avoid core1 locking up since
it doesn't enable any interrupts by default (except for `SIO_IRQ_PROC1`).
This fixes a lockup when calling `cyw43_do_ioctl` from core1.
Fixes issue #9597.
If USB CDC is connected and the board sends data, but the host does not
receive the data, the device locks up. This is fixed in this commit by
having a timeout of 500ms, after which time the transmission is skipped.
If USB CDC is connected and the board sends data, but the host does not
receive the data, the device locks up. This is fixed in this commit by
having a timeout of 500ms, after which time the transmission is skipped.
If USB CDC is connected and the board sends data, but the host does not
receive the data, the device locks up. This is fixed in this commit by
having a timeout of 500ms, after which time the transmission is skipped.
If USB CDC is connected and the board sends data, but the host does not
receive the data, the device locks up. This is fixed in this commit by
having a timeout of 500ms, after which time the transmission is skipped.
Fixes issue #9634.