This allows user code that inherits from uio.IOBase to return an errno
error code from the user readinto/write function, by returning a negative
value. Eg returning -123 means an errno of 123. This is already how the
custom ioctl works.
This change is made for two reasons:
1. A 3rd-party library (eg berkeley-db-1.xx, axtls) may use the system
provided errno for certain errors, and yet MicroPython stream objects
that it calls will be using the internal mp_stream_errno. So if the
library returns an error it is not known whether the corresponding errno
code is stored in the system errno or mp_stream_errno. Using the system
errno in all cases (eg in the mp_stream_posix_XXX wrappers) fixes this
ambiguity.
2. For systems that have threading the system-provided errno should always
be used because the errno value is thread-local.
For systems that do not have an errno, the new lib/embed/__errno.c file is
provided.
Note: the uncrustify configuration is explicitly set to 'add' instead of
'force' in order not to alter the comments which use extra spaces after //
as a means of indenting text for clarity.
This commit consolidates a number of check_esp_err functions that check
whether an ESP-IDF return code is OK and raises an exception if not. The
exception raised is an OSError with the error code as the first argument
(negative if it's ESP-IDF specific) and the ESP-IDF error string as the
second argument.
This commit also fixes esp32.Partition.set_boot to use check_esp_err, and
uses that function for a unit test.
This commit adds an idf_heap_info(capabilities) method to the esp32 module
which returns info about the ESP-IDF heaps. It's useful to get a bit of a
picture of what's going on when code fails because ESP-IDF can't allocate
memory anymore. Includes documentation and a test.
This is to make the Travis CI size check more robust, by not relying on the
saved firmware from a previous build (which may use a different compiler,
environment, etc) but rather compile both master and the PR and diff them.
This size check now checks both bare-arm and minimal x86-32 builds (before
it just checked minimal Cortex-M build).
Error string compression is not deterministic in certain cases: it depends
on the Python version (whether dicts are ordered by default or not) and
probably also the order files are passed to this script, leading to a
difference in which words are included in the top 128 most common.
The changes in this commit use OrderedDict to keep parsed lines in a known
order, and, when computing how many bytes are saved by a given word, it
uses the word itself to break ties (which would otherwise be "random").
In mboot, the ability to override the USB vendor/product id's was added
back in 5688c9ba09. However, when the main
firmware is turned into a DFU file the default VID/PID are used there.
pydfu.py doesn't care about this but dfu-util does and prevents its use
when the VID/PID don't match.
This commit exposes BOOTLOADER_DFU_USB_VID/PID as make variables, for use
on either command line or mpconfigboard.mk, to set VID/PID in both mboot
and DFU files.
Add -Wdouble-promotion and -Wfloat-conversion for most ports to ban out
implicit floating point conversions, and add extra Travis builds using
MICROPY_FLOAT_IMPL_FLOAT to uncover warnings which weren't found
previously. For the unix port -Wsign-comparison is added as well but only
there since only clang supports this but gcc doesn't.
For combinations of certain versions of glibc and gcc the definition of
fpclassify always takes float as argument instead of adapting itself to
float/double/long double as required by the C99 standard. At the time of
writing this happens for instance for glibc 2.27 with gcc 7.5.0 when
compiled with -Os and glibc 3.0.7 with gcc 9.3.0. When calling fpclassify
with double as argument, as in objint.c, this results in an implicit
narrowing conversion which is not really correct plus results in a warning
when compiled with -Wfloat-conversion. So fix this by spelling out the
logic manually.
When the unix and windows ports use MICROPY_FLOAT_IMPL_FLOAT instead of
MICROPY_FLOAT_IMPL_DOUBLE, the test output has for example
complex(-0.15052, 0.34109) instead of the expected
complex(-0.15051, 0.34109).
Use one decimal place less for the output printing to fix this.
Initially some of these were found building the unix coverage variant on
MacOS because that build uses clang and has -Wdouble-promotion enabled, and
clang performs more vigorous promotion checks than gcc. Additionally the
codebase has been compiled with clang and msvc (the latter with warning
level 3), and with MICROPY_FLOAT_IMPL_FLOAT to find the rest of the
conversions.
Fixes are implemented either as explicit casts, or by using the correct
type, or by using one of the utility functions to handle floating point
casting; these have been moved from nativeglue.c to the public API.
For jobs which run tests multiple times terminate after the first run fails
otherwise the next test run overwrites the previous results, making
--print-failures useless.
Looking at the recent build history the time it takes just to complete the
OSX build is already 12 minutes so make it start early, which brings down
the total build time from about 20 minutes to 14 minutes.
Change mp_uint_t to size_t to match the mp_print_strn_t function prototype.
This fixes a compiler warning when mp_uint_t and size_t are not the same
size.
This commit provides a typedef for mp_rom_error_text_t, and a macro define
for MP_COMPRESSED_ROM_TEXT, when MICROPY_ROM_TEXT_COMPRESSION is disabled.
This simplifies the configuration (it no longer has a special case for
MICROPY_ENABLE_DYNRUNTIME) and makes it work for other cases that don't use
compression (eg examples/embedding). This commit also ensures
MICROPY_ROM_TEXT_COMPRESSION is defined during qstr processing.
Now that error string compression is supported it's more important to have
consistent error string formatting (eg all lowercase English words,
consistent contractions). This commit cleans up some of the strings to
make them more consistent.
This commit adds Loop.new_event_loop() which is used to reset the singleton
event loop. This functionality is put here instead of in Loop.close() to
make it possible to write code that is compatible with CPython.
Because the atomic section starts after checking whether the scheduler
state is pending, it's possible it can become a different state by the time
the atomic section starts.
This is especially likely on ports where MICROPY_BEGIN_ATOMIC_SECTION is
implemented with a mutex (i.e. it might block), but the race exists
regardless, i.e. if a context switch occurs between those two lines.
This macro is used to implement global serialisation, typically by
disabling IRQs. On the unix port, if threading is enabled, use the
existing thread mutex (that protects the thread list structure) for this
purpose. Other places in the code (eg the scheduler) assume this macro
will provide serialisation.
Based on eg 1e6fd9f2b4, it's understood that
the intention for unix builds is that regular builds disable assert, but
the coverage build should set -O0 and enable asserts.
It looks like this didn't work (even before variants were introduced, eg at
v1.11) -- coverage always built with -Os and -DNDEBUG.
This commit makes it possible for variants to have finer-grained control
over COPT flags, and enables assert() and -O0 on coverage builds.
Other variants already match the defaults so they have been updated.
TimeoutError was added back in 077812b2ab for
the cc3200 port. In f522849a4d the cc3200
port enabled use of it in the socket module aliased to socket.timeout. So
it was never added to the builtins. Then it was replaced by
OSError(ETIMEDOUT) in 047af9b10b.
The esp32 port enables this exception, since the very beginning of that
port, but it could never be accessed because it's not in builtins.
It's being removed: 1) to not encourage its use; 2) because there are a lot
of other OSError subclasses which are not defined at all, and having
TimeoutError is a bit inconsistent.
Note that ports can add anything to the builtins via MICROPY_PORT_BUILTINS.
And they can also define their own exceptions using the
MP_DEFINE_EXCEPTION() macro.