This fixes a bug where double arguments on a 32-bit architecture would not
be passed correctly because they only had 4 bytes of storage (not 8). It
also fixes a compiler warning/error in return_ffi_value on certian
architectures: array subscript 'double[0]' is partly outside array bounds
of 'ffi_arg[1]' {aka 'long unsigned int[1]'}.
Fixes issue #7064.
Signed-off-by: Damien George <damien@micropython.org>
Doing "import <tab>" will now complete/list built-in modules.
Originally at adafruit#4548 and adafruit#4608
Signed-off-by: Artyom Skrobov <tyomitch@gmail.com>
Anything beginning with "_" will now only be tab-completed if there is
already a partial match for such an entry. In other words, entering
foo.<tab> will no longer complete/list anything beginning with "_".
Originally at adafruit#1850
Signed-off-by: Kathryn Lingel <kathryn@lingel.net>
Two issues are tackled:
1. The calculation of the correct length to print is fixed to treat the
precision as a maximum length instead as the exact length.
This is done for both qstr (%q) and for regular str (%s).
2. Fix the incorrect use of mp_printf("%.*s") to mp_print_strn().
Because of the fix of above issue, some testcases that would print
an embedded null-byte (^@ in test-output) would now fail.
The bug here is that "%s" was used to print null-bytes. Instead,
mp_print_strn is used to make sure all bytes are outputted and the
exact length is respected.
Test-cases are added for both %s and %q with a combination of precision
and padding specifiers.
Add working example code to provide a starting point for users with files
that they can just copy, and include the modules in the coverage test to
verify the complete user C module build functionality. The cexample module
uses the code originally found in cmodules.rst, which has been updated to
reflect this and partially rewritten with more complete information.
Support building .cpp files and linking them into the micropython
executable in a way similar to how it is done for .c files. The main
incentive here is to enable user C modules to use C++ files (which are put
in SRC_MOD_CXX by py.mk) since the core itself does not utilize C++.
However, to verify build functionality a unix overage test is added. The
esp32 port already has CXXFLAGS so just add the user modules' flags to it.
For the unix port use a copy of the CFLAGS but strip the ones which are not
usable for C++.
This adds the Python files in the tests/ directory to be formatted with
./tools/codeformat.py. The basics/ subdirectory is excluded for now so we
aren't changing too much at once.
In a few places `# fmt: off`/`# fmt: on` was used where the code had
special formatting for readability or where the test was actually testing
the specific formatting.
As the mktime documentation for CPython states: "The earliest date for
which it can generate a time is platform-dependent". In particular on
Windows this depends on the timezone so e.g. for UTC+2 the earliest is 2
hours past midnight January 1970. So change the reference to the earliest
possible, for UTC+14.
This behaviour of a NULL write C method on a stream that uses the write
adaptor objects is no longer supported. It was only ever used by the
coverage build for testing the fail path of mp_get_stream_raise().
This test for calling gc_realloc() while the GC is locked can be done in
pure Python, so better to do it that way since it can then be tested on
more ports.
Prior to this patch the %f formatting of some FP values could be off by up
to 1, eg '%.0f' % 123 would return "122" (unix x64). Depending on the FP
precision (single vs double) certain numbers would format correctly, but
others wolud not. This patch should fix all cases of rounding for %f.
These new tests cover cases that can't be reached from Python and get
coverage of py/mpz.c to 100%.
These "unreachable from Python" pieces of code could be removed but they
form an integral part of the mpz C API and may be useful for non-Python
usage of mpz.
This patch changes the way REPL autocomplete finds matches. It now probes
the target object for all qstrs via mp_load_method_maybe to look for a
match with the given input string. Similar to how the builtin dir()
function works, this new algorithm now find all methods and instances of
user-defined classes including attributes of their parent classes. This
helps a lot at the REPL prompt for user-discovery and to autocomplete names
even for classes that are derived.
The downside is that this new algorithm is slower than the previous one,
and in particular will be slower the more qstrs there are in the system.
But because REPL autocomplete is primarily used in an interactive way it is
not that important to make it fast, as long as it is "fast enough" compared
to human reaction.
On a slow microcontroller (CPU running at 16MHz) the autocomplete time for
a list of 35 names in the outer namespace (pressing tab at a bare prompt)
takes about 160ms with this algorithm, compared to about 40ms for the
previous implementation (this time includes the actual printing of the
names as well). This time of 160ms is very reasonable especially given the
new functionality of listing all the names.
This patch also decreases code size by:
bare-arm: +0
minimal x86: -128
unix x64: -128
unix nanbox: -224
stm32: -88
cc3200: -80
esp8266: -92
esp32: -84
If MICROPY_PY_ALL_SPECIAL_METHODS is defined, actually define all special
methods (still subject to gating by e.g. MICROPY_PY_REVERSE_SPECIAL_METHODS).
This adds quite a number of qstr's, so should be used sparingly.
Current users of fixed vstr buffers (building file paths) assume that there
is no overflow and do not check for overflow after building the vstr. This
has the potential to lead to NULL pointer dereferences
(when vstr_null_terminated_str returns NULL because it can't allocate RAM
for the terminating byte) and stat'ing and loading invalid path names (due
to the path being truncated). The safest and simplest thing to do in these
cases is just raise an exception if a write goes beyond the end of a fixed
vstr buffer, which is what this patch does. It also simplifies the vstr
code.
This allows user classes to implement __abs__ special method, and saves
code size (104 bytes for x86_64), even though during refactor, an issue
was fixed and few optimizations were made:
* abs() of minimum (negative) small int value is calculated properly.
* objint_longlong and objint_mpz avoid allocating new object is the
argument is already non-negative.
Arguments of an unknown type cannot be skipped and continuing to parse a
format string after encountering an unknown format specifier leads to
undefined behaviour. This patch helps to find use of unsupported formats.
For the sake of older versions of gcc (and other compilers), don't use
the #warning CPP directive, nor the -Wno-error=cpp option.
Also, fix a strict alias warning in modffi.c for older compilers, and
add a test for ffi module.
Addresses issue #847.