- Update guide for extending built-in modules.
- Remove any last trace of umodule in other docs.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
- Make the docs match the new behavior which only allows certain modules
to be extended.
- List the modules that currently have the u-prefix.
- Add a note about the sys.path method for forcing a built-in import.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit enables the ULP for the S2 and S3 chips.
Note this is the FSM (Finite State Machine) ULP.
Signed-off-by: Patrick Joy <patrick@joytech.com.au>
Update docs/library/espnow.rst to add:
- guidance on using WLAN.config(pm=WLAN.PM_NONE) for reliable
espnow performance while also connected to a wifi access point;
- guidance on receiving encrypted messages;
- correction for default value of "encrypt" parameter (add_peer());
- guidance on use of ESPNow.irq(): recommand users readout all messages
in the buffer each time the callback is called.
Signed-off-by: Glenn Moloney <glenn.moloney@gmail.com>
Currently rp2.StateMachine.exec(instr_in) requires that the instr_in
parameter be a string representing the PIO assembly language instruction
to be encoded by rp2.asm_pio_encode(). This commit allows the parameter
to also be of integral type. This is useful if the exec() method is
being called often where the use of pre-encoded machine code is
desireable.
This commit still supports calls like:
sm.exec("set(0, 1)")
It also now supports calls like:
# Performed once earlier, maybe in __init__()
assembled_instr = rp2.asm_pio_encode("out(y, 8)", 0)
# Performed multiple times later as the PIO state machine is
# configured for its next run.
sm.exec(assembled_instr)
The existing examples/rp2/pio_exec.py and examples/rp2/pio_pwm.py that
exercise the rp2.StateMachine.exec() method still work with this change.
Signed-off-by: Adam Green <adamgrym@yahoo.com>
For esp32 and esp8266 this commit adds:
- a 'pm' option to WLAN.config() to set/get the wifi power saving mode; and
- PM_NONE, PM_PERFORMANCE and PM_POWERSAVE constants to the WLAN class.
This API should be general enough to use with all WLAN drivers.
Documentation is also added.
This adds the freq and duty_u16 keyword settings to the constructor, and
sometimes other details in the PWM section.
For mimxrt a clarification regarding the PWM invert argument was added, and
for rp2 a few words were spent on PWM output pairs of a channel/slice.
ESP-NOW is a proprietary wireless communication protocol which supports
connectionless communication between ESP32 and ESP8266 devices, using
vendor specific WiFi frames. This commit adds support for this protocol
through a new `espnow` module.
This commit builds on original work done by @nickzoic, @shawwwn and with
contributions from @zoland. Features include:
- Use of (extended) ring buffers in py/ringbuf.[ch] for robust IO.
- Signal strength (RSSI) monitoring.
- Core support in `_espnow` C module, extended by `espnow.py` module.
- Asyncio support via `aioespnow.py` module (separate to this commit).
- Docs provided at `docs/library/espnow.rst`.
Methods available in espnow.ESPNow class are:
- active(True/False)
- config(): set rx buffer size, read timeout and tx rate
- recv()/irecv()/recvinto() to read incoming messages from peers
- send() to send messages to peer devices
- any() to test if a message is ready to read
- irq() to set callback for received messages
- stats() returns transfer stats:
(tx_pkts, tx_pkt_responses, tx_failures, rx_pkts, lost_rx_pkts)
- add_peer(mac, ...) registers a peer before sending messages
- get_peer(mac) returns peer info: (mac, lmk, channel, ifidx, encrypt)
- mod_peer(mac, ...) changes peer info parameters
- get_peers() returns all peer info tuples
- peers_table supports RSSI signal monitoring for received messages:
{peer1: [rssi, time_ms], peer2: [rssi, time_ms], ...}
ESP8266 is a pared down version of the ESP32 ESPNow support due to code
size restrictions and differences in the low-level API. See docs for
details.
Also included is a test suite in tests/multi_espnow. This tests basic
espnow data transfer, multiple transfers, various message sizes, encrypted
messages (pmk and lmk), and asyncio support.
Initial work is from https://github.com/micropython/micropython/pull/4115.
Initial import of code is from:
https://github.com/nickzoic/micropython/tree/espnow-4115.
This replaces the previous pending operation queue (that used to also be
shared with pending server notify/indicate ops) with a single pending
operation per connection. This allows the value handle to be correctly
passed to the Python-level events.
Also re-structure GATT client event handling to simplify the packet handler
functions.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Makes gatts_notify and gatts_indicate work in the same way: by default they
send the DB value, but you can manually override the payload.
In other words, makes gatts_indicate work the same as gatts_notify.
Note: This removes support for queuing notifications and indications on
btstack when the ACL buffer is full. This functionality will be
reimplemented in a future commit.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit adds support for the `timeout` keyword argument to machine.I2C
on the rp2 port, following how it's done on other ports.
The main motivation here is avoid the interpreter crashing due to infinite
loops when SDA is stuck low, which is quite common if the board gets reset
while reading from an I2C device.
A default timeout of 50ms is chosen because it's consistent with:
- Commit a707fe50b0 which used a timeout of
50,000us for zero-length writes on the rp2 port.
- The machine.SoftI2C class which uses 50,000us as the default timeout.
- The stm32 port's hardware I2C, which uses 50,000us for
I2C_POLL_DEFAULT_TIMEOUT_US.
This commit also fixes the default timeout on the esp32 port to be
consistent with the above, and updates the documentation for machine.I2C to
document this keyword argument.
This function seems to work fine in multi-core applications now.
The delay is now in units of microseconds instead of depending on the clock
speed, and is adjustable by board configuration headers.
Also added documentation.
This required to add two functions down the stack to uart.c and ra.sci.c.
- One for telling, whther the transmission is busy.
- One for reporting the size of the TX buffer.
Tested with a EK-RA6M2 board.
Prior to this commit, the actual I2C frequency can be faster than specified
one and it may exceed the I2C's specification for Fast Mode. The frequency
of SCL should be less than or equal to 400KHz in Fast Mode.
This commit fixes this issue for F4 MCUs by rounding up the division in the
frequency calculation.
This is technically a breaking change, but:
a) We need the end handle to do descriptor discovery properly.
b) We have no possible use for the existing definition handle in the
characteristic result IRQ. None of the methods can use it, and therefore
no existing code should be using it in a way that changing it to a
different integer value should break.
Unfortunately NimBLE doesn't make it easy to get the end handle, so also
implement a mechanism to use the following characteristic to calculate
the previous characteristic's end handle.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Quite regularly users complain about unexpected behavior of I2C, calling it
a bug, when in fact the trouble is caused by missing pull-up resistors. So
this commit adds a note to the documentation, in the slim hope that people
will find and read it.
* `init()` can be called multiple times to reconfigure UART.
* After `deinit()` it is impossible to call `init()` again.
Signed-off-by: Tomasz 'CeDeROM' CEDRO <tomek@cedro.info>
Add method for drawing polygons.
For non-filled polygons, uses the existing line-drawing code to render
arbitrary polygons using the given coords list, at the given x,y position,
in the given colour.
For filled polygons, arbitrary closed polygons are rendered using a fast
point-in-polygon algorithm to determine where the edges of the polygon lie
on each pixel row.
Tests and documentation updates are also included.
Signed-off-by: Mat Booth <mat.booth@gmail.com>
We plan to add `ellipse` and `poly` methods, but rather than having to
implement a `fill_xyz` version of each, we can make them take an optional
fill argument. This commit add this to `rect` as a starting point.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This is useful in situations where the ThreadSafeFlag is reused and needs
to be cleared of any previous, unwanted event.
For example, clear the flag at the start of an operation, trigger the
operation (eg an I2C write), then (a)wait for an external event to set the
flag (eg a pin IRQ). Further events may trigger the flag again but these
are unwanted and should be cleared before the next cycle starts.
Document how to connect the Timer block BRK_IN to a physical Pin alternate
function.
Add an example of PWM Motor drive using complementary outputs with dead
time and break input to kill the PWM and generate a callback.
Signed-off-by: Chris Mason <c.mason@inchipdesign.com.au>
Some Pin alternate functions are inputs, for example, timer capture and
break inputs. In Pyb.Pin the only way to set alt mode is with Pin.AF_PP or
Pin.AF_OD. It is not intuitive to use an output mode to configure an
input. Pin.ALT is used in the machine.Pin class and works in pyb.Pin.
The examples are changed to use Pin.ALT because TIM2_CH3 can be a capture
input or pulse output.
Signed-off-by: Chris Mason <c.mason@inchipdesign.com.au>
Remove out of context callback paragraph, it was part of the wipy docs.
And move the paragraph about PULL_UP/PULL_DOWN resistor values to within
the init() method docs. Also fix pull-pull -> push-pull.
Signed-off-by: Chris Mason <c.mason@inchipdesign.com.au>