The DFU USB config descriptor returns 0x0800=2048 for the supported
transfer size, and this applies to both TX (IN) and RX (OUT). So increase
the rx_buf to support this size without having a buffer overflow on
received data.
With this patch mboot in USB DFU mode now works with dfu-util.
Currently <WLAN>.isconnected() always returns True if a static IP is set,
regardless of the state of the connection.
This patch introduces a new flag 'wifi_sta_connected' which is set in
event_handler() when GOT_IP event is received and reset when DISCONNECTED
event is received (unless re-connect is successful). isconnected() now
simply returns the status of this flag (for STA_IF).
The pre-existing flag misleadingly named 'wifi_sta_connected" is also
renamed to 'wifi_sta_connect_requested'.
Fixes issue #3837
MICROPY_PY_DELATTR_SETATTR can now be enabled without a performance hit for
classes that don't use this feature.
MICROPY_PY_BUILTINS_NOTIMPLEMENTED is a minor addition that improves
compatibility with CPython.
They are now efficient (in runtime performance) and provide a useful
feature that's hard to obtain without them enabled.
See issue #3644 and PR #3826 for background.
Now that the coverage build has fully switched to the VFS sub-system these
functions were no longer available, so add them to the uos_vfs module.
Also, vfs_open is no longer needed, it's available as the built-in open.
The unix coverage build is now switched fully to the VFS implementation, ie
the uos module is the uos_vfs module. For example, one can now sandbox uPy
to their home directory via:
$ ./micropython_coverage
>>> import uos
>>> uos.umount('/') # unmount existing root VFS
>>> vfs = uos.VfsPosix('/home/user') # create new POSIX VFS
>>> uos.mount(vfs, '/') # mount new POSIX VFS at root
Some filesystem/OS features may no longer work with the coverage build due
to this change, and these need to be gradually fixed.
The standard unix port remains unchanged, it still uses the traditional uos
module which directly accesses the underlying host filesystem.
This patch adds support for building the firmware with external SPI RAM
enabled. It is disabled by default because it adds overhead (due to
silicon workarounds) and reduces performance (because it's slower to have
bytecode and objects stored in external RAM).
To enable it, either use "make CONFIG_SPIRAM_SUPPORT=1", or add this line
to you custom makefile/GNUmakefile (before "include Makefile"):
CONFIG_SPIRAM_SUPPORT = 1
When this option is enabled the MicroPython heap is automatically allocated
in external SPI RAM.
Thanks to Angus Gratton for help with the compiler and linker settings.
Also, re-enable calibration storage for CircuitPlayground Express.
Tested with a 500hz PWMOut on Metro M0 with Saleae:
* with crystal 500hz
* with usb 500hz +- 0.1hz
* without either 487hz += 0.1hz
SAMD51 is skipped due to DFLL errata and the fact it defaults to a
factory calibrated 48mhz that works fine for USB.
Fixes#648
This uses the crystal to clock the RTC on boards which have a crystal.
Disable clock generator 2 which was enabled in commit
8e2080411f65 ("atmel-samd: Add rtc module support").
samd51 differs from samd21 when it comes to the RTC clock. samd51 doesn't
have an explicit clock peripheral so no need for a clock generator.
The same commit didn't even setup XOSC32K correctly, it missed EN1K and XTALEN.
The RTC uses the 1k clock output, so enable it on the OSCULP32K even if it works without it.
Refactor the convoluted asf4 clock setup into something more readable.
enable_clock_generator() has 2 changes:
- Set 'Output enabled' to match the current clock setup
- Handle divisors above 511
Add an enable_clock_generator_sync() version which makes it possible to setup
clocks without waiting for syncing. The bootup would hang without this.
I have checked these registers:
NVMCTRL->CTRLA = 0x00000004
Peripheral clocks (only non-zero shown):
PCHCTRL[1]=0x00000045
PCHCTRL[10]=0x00000041
Generator clocks (only non-zero shown):
GENCTRL[0] = 0x00010907
GENCTRL[1] = 0x00010906
-GENCTRL[2] = 0x00041104
+GENCTRL[2] = 0x00200904
GENCTRL[4] = 0x00010907
GENCTRL[5] = 0x00180906
DFLL clock:
OSCCTRL->DFLLCTRLA = 0x00000082
OSCCTRL->DFLLCTRLB = 0x00000000
OSCCTRL->DFLLVAL = 0x00008082
OSCCTRL->DFLLMUL = 0x00000000
DPLL clocks:
OSCCTRL->Dpll[0].DPLLCTRLA=0x00000002
OSCCTRL->Dpll[0].DPLLCTRLB=0x00000000
OSCCTRL->Dpll[0].DPLLRATIO=0x0000003b
OSCCTRL->Dpll[1].DPLLCTRLA=0x00000080
OSCCTRL->Dpll[1].DPLLCTRLB=0x00000020
OSCCTRL->Dpll[1].DPLLRATIO=0x00000000
OSC32KCTRL clock:
OSC32KCTRL->RTCCTRL = 0x00000000
OSC32KCTRL->XOSC32K = 0x00002082
OSC32KCTRL->CFDCTRL = 0x00000000
OSC32KCTRL->EVCTRL = 0x00000000
OSC32KCTRL->OSCULP32K = 0x00002300
Only gen2 changed which is due to samd51 having more bits in the simple
division register so DIVSEL wasn't necessary, and it didn't have OE set.
The Wiznet5k series of chips support a MACRAW mode which allows the host to
send and receive Ethernet frames directly. This can be hooked into the
lwIP stack to provide a full "socket" implementation using this Wiznet
Ethernet device. This patch adds support for this feature.
To enable the feature one must add the following to mpconfigboard.mk, or
mpconfigport.mk:
MICROPY_PY_WIZNET5K = 5500
and the following to mpconfigboard.h, or mpconfigport.h:
#define MICROPY_PY_LWIP (1)
After wiring up the module (X5=CS, X4=RST), usage on a pyboard is:
import time, network
nic = network.WIZNET5K(pyb.SPI(1), pyb.Pin.board.X5, pyb.Pin.board.X4)
nic.active(1)
while not nic.isconnected():
time.sleep_ms(50) # needed to poll the NIC
print(nic.ifconfig())
Then use the socket module as usual.
Compared to using the built-in TCP/IP stack on the Wiznet module, some
performance is lost in MACRAW mode: with a lot of memory allocated to lwIP
buffers, lwIP gives Around 750,000 bytes/sec max TCP download, compared
with 1M/sec when using the TCP/IP stack on the Wiznet module.
It should be up to the NIC itself to decide if the network interface is
removed upon soft reset. Some NICs can keep the interface up over a soft
reset, which improves usability of the network.
Pins with multiple alt-funcs for the same peripheral (eg USART_CTS_NSS)
need to be split into individual alt-funcs for make-pins.py to work
correctly.
This patch changes the following:
- Split `..._CTS_NSS` into `..._CTS/..._NSS`
- Split `..._RTS_DE` into `..._RTS/..._DE`
- Split `JTDO_SWO` into `JTDO/TRACESWO` for consistency
- Fixed `TRACECK` to `TRACECLK` for consistency